Abstract

We report a detailed physical characterization of a novel array of organic distributed feedback microcavity lasers possessing a high ratio between the quality factor Q of the resonant cavity and its volume V. The optical microcavity was obtained by confining self-organized mesophases doped with fluorescent guest molecules into holographically patterned polymeric microchannels. The liquid crystal microchannels act as mirror-less cavity lasers, where the emitted laser light propagates along the liquid crystal helical axis behaving as Bragg resonator. This miniaturization process allows us to obtain a micro-laser array possessing an ultralow lasing threshold (25nJ/pulse) while having directional control on the lasing emission, a fine wavelength tunability and the control over the emission intensity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  2. S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
    [Crossref] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
    [Crossref] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics, ”Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  6. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
    [Crossref]
  7. J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
    [Crossref]
  8. J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179 (2003).
    [Crossref]
  9. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
    [Crossref]
  10. V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
    [Crossref] [PubMed]
  11. H. Kogelnik and C.V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152 (1971).
    [Crossref]
  12. L.S. Goldberg and J.M. Schnur, U.S. Patent 3 771 065 (1973).
  13. G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
    [Crossref] [PubMed]
  14. V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
    [Crossref]
  15. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
    [Crossref]
  16. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
    [Crossref]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
    [Crossref]
  18. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
    [Crossref] [PubMed]
  19. S.-T. Wu and D.-K. Yang: Reflective Liquid Crystal Displays (John Wiley & Sons, Chichester, 2001) p.126
  20. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
  21. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
    [Crossref]

2005 (2)

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

2004 (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

2003 (1)

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179 (2003).
[Crossref]

2002 (4)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
[Crossref] [PubMed]

2001 (1)

V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
[Crossref] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics, ”Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

1971 (1)

H. Kogelnik and C.V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152 (1971).
[Crossref]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
[Crossref]

Asatryan, A. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

Barna, V.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

Bartolino, R..

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
[Crossref]

Botten, L. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

Cao, W.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).

De Luca, A.

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

De Sio, L.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

de Sterke, C. M.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

Ferjani, S.

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Genack, A.Z.

V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
[Crossref] [PubMed]

Goldberg, L.S.

L.S. Goldberg and J.M. Schnur, U.S. Patent 3 771 065 (1973).

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Kim, S.T.

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik and C.V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152 (1971).
[Crossref]

Kopp, V.I.

V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

McOrist, J.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

McPhedran, R. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

Nicorovici, N. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Ozaki, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Palffy-Muhoray, P.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
[Crossref]

Price, G.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
[Crossref]

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179 (2003).
[Crossref]

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

Schnur, J.M.

L.S. Goldberg and J.M. Schnur, U.S. Patent 3 771 065 (1973).

Shank, C.V.

H. Kogelnik and C.V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152 (1971).
[Crossref]

Spillane, S.

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
[Crossref] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Stille, W.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179 (2003).
[Crossref]

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

Sukhov, A. V.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

Taheri, B.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
[Crossref]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

Vahala, K. J.

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
[Crossref] [PubMed]

Vahalaa, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Veltri, A.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

Versace, C.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Wu, S.-T.

S.-T. Wu and D.-K. Yang: Reflective Liquid Crystal Displays (John Wiley & Sons, Chichester, 2001) p.126

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics, ”Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yang, D.-K.

S.-T. Wu and D.-K. Yang: Reflective Liquid Crystal Displays (John Wiley & Sons, Chichester, 2001) p.126

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Yoshino, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Zhang, Z.Q.

V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
[Crossref] [PubMed]

Adv. Mat. (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S.T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mat. 14, 746 (2002).
[Crossref]

Adv. Mater. (1)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal” Adv. Mater. 14, 306 (2002).
[Crossref]

Appl. Phys. Lett. (3)

V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangi, “Band-Edge and Defect Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities,” Appl. Phys. Lett. 87, 221108 (2005).
[Crossref]

H. Kogelnik and C.V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152 (1971).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahalaa, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Eur. Phys. J. B (1)

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179 (2003).
[Crossref]

Nature (1)

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621 (2002).
[Crossref] [PubMed]

Nature Mat. (1)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II” Nature Mat. 1, 111 (2002).
[Crossref]

Opt. Lett (1)

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Development of new kind of holographic grating made of liquid crystal films separated by slices of polymeric material” Opt. Lett 29, 1261 (2004).
[Crossref] [PubMed]

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 681 (1946).
[Crossref]

Phys. Rev. E (1)

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004).
[Crossref]

Phys. Rev. Lett. (4)

V.I. Kopp, Z.Q. Zhang, and A.Z. Genack, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers ,“ Phys. Rev. Lett. 86, 1753 (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics, ”Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R.. Bartolino, and G. Price, “Color Tunable Distributed Feedback Organic Micro-Cavity Laser,” Phys. Rev. Lett. 94, 063903(2005). Editor ‘s choice for Virtual Journal of Nanoscale Science and Technology  11, 8 (2005).
[Crossref] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Other (5)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

L.S. Goldberg and J.M. Schnur, U.S. Patent 3 771 065 (1973).

S.-T. Wu and D.-K. Yang: Reflective Liquid Crystal Displays (John Wiley & Sons, Chichester, 2001) p.126

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup: the series of optical elements allows to select the state of polarization of the excitation pulses, and the emitted light is analyzed through a multi-channel CCD spectrometer.

Fig. 2.
Fig. 2.

(a) Emission Spectra as a function of the pump energy for conventional cell. (b) Diagram of Stimulated Emission process in a conventional cell.

Fig. 3.
Fig. 3.

(a) Optical microscopy and (b) scanning electron microscopy images of the organic microcavity reveal a very well-defined morphology consisting in a string of side-by-side polymeric microchannels. Spatial periodicity of the structure of about 5 μm with the microcavity width of 1.5 μm.

Fig. 4.
Fig. 4.

3D Sketch describing the micro-laser array scenario. Highly directional and intense stimulated emission is achieved emerging from the microcavities in a direction parallel to the glass plates and along the microchannel structure.

Fig. 5.
Fig. 5.

(a) Stimulated emission and fluorescence spectra. Lasing is obtained at red-edge of the photonic bandgap. Notice the remarkable spectral overlapping of the high efficiency region of the dye fluorescence spectrum and the low energy edge of the stop band. (b) Photonic Stop Band spectrum and theoretically calculated DOS.

Fig. 6.
Fig. 6.

(a) Emission intensity and line-width dependence on the pump energy. Above a threshold of 25nJ/pulse the reported curves change from initial regimes while lasing occurs. (b) Polarized fluorescence measurements suggest an anisotropic orientational distribution for the dye transition dipole moments. Calculated order parameter value is SD=0.23.

Fig. 7.
Fig. 7.

(a) Stimulated emission spectra as function of temperature. A fine tuning (0.2 nm/°C) of the lasing wavelength is achieved for the spectral range 580-590 nm. The inset shows the lasing wavelength dependence on temperature. (b) Lasing emission intensity dependence on the applied voltage. While keeping a fixed pump energy a four fold lowering of the stimulated emission intensity is achieved by applying an external voltage in the range 0 - 50 VRMS.

Fig. 8.
Fig. 8.

Spatial distribution of the laser emission emerging from the mirrorless microcavity laser array. The periodicity of maximum intensities is 5 ☐m. This value is in conformity with the tailoring distance between the polymeric microchannels.

Fig. 9.
Fig. 9.

The intensity profile of a selected spatial mode of the laser array. The longitudinal and transversal intensity scan is fitted with a Gaussian curve. The simulated intensity profile for the presented astigmatic cavities shows an elliptic Gaussian profile revealing a remarkable agreement with the emitted spatial modes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F P = 3 4 π 2 Q V ( λ n ) 3
Q = ω t c
t c = 2 nl c [ 4 π k λ ] In R
S D = ( F F ) 1 2 1 ( F F ) 1 2 + 2
E c = 2 π 5 / 2 P 0 ( K 2 ε a ) 1 / 2

Metrics