Abstract

Applicability of multimode interference effect and self-imaging principle for terahertz waves in two-dimensional silicon photonic crystal waveguides are investigated by modeling and computation. The results show that the multimode interference effect and the self-imaging principle are applicable for terahertz waves. As an example, a splitter and a filter for terahertz waves have been proposed, calculated and analyzed by finite-difference time-domain method based on the multimode interference effect and the self-imaging principle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  2. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
    [CrossRef] [PubMed]
  3. A. Borak, "Toward bridging the terahertz gap with silicon-based lasers," Science 308, 638-639 (2005).
    [CrossRef] [PubMed]
  4. O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
    [CrossRef]
  5. D. Clery, "Terahertz on a chip," Science 297, 763 (2002).
    [CrossRef] [PubMed]
  6. N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
    [CrossRef]
  7. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
    [CrossRef]
  8. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004).
    [CrossRef] [PubMed]
  9. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004).
    [CrossRef]
  10. H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
    [CrossRef]
  11. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  12. C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
    [CrossRef]
  13. N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
    [CrossRef]
  14. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-57231
    [CrossRef] [PubMed]
  15. K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
    [CrossRef]
  16. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
    [CrossRef]
  17. H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
    [CrossRef]
  18. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
    [CrossRef]
  19. A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
    [CrossRef]
  20. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee and S. G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing," Opt. Express 12, 5625-5633 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5625
    [CrossRef] [PubMed]
  21. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  22. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
    [CrossRef]
  23. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
    [CrossRef] [PubMed]

2005 (3)

A. Borak, "Toward bridging the terahertz gap with silicon-based lasers," Science 308, 638-639 (2005).
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

2004 (7)

K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004).
[CrossRef] [PubMed]

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004).
[CrossRef]

H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee and S. G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing," Opt. Express 12, 5625-5633 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5625
[CrossRef] [PubMed]

C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-57231
[CrossRef] [PubMed]

2003 (2)

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

2002 (6)

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

D. Clery, "Terahertz on a chip," Science 297, 763 (2002).
[CrossRef] [PubMed]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

2001 (3)

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
[CrossRef] [PubMed]

O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
[CrossRef]

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

1999 (1)

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Astafiev, O.

O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
[CrossRef]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Bingham, A.

A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

Borak, A.

A. Borak, "Toward bridging the terahertz gap with silicon-based lasers," Science 308, 638-639 (2005).
[CrossRef] [PubMed]

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Chen, C.

Cheng, B.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Clery, D.

D. Clery, "Terahertz on a chip," Science 297, 763 (2002).
[CrossRef] [PubMed]

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Dragoman, D.

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004).
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004).
[CrossRef]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

Duvillaret, L.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Garet, F.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

Grischkowsky, D.

A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Hangyo, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

Haus, J. W.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Inoue, K.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Jin, C.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jordan, K.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Jukam, N.

N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Kawai, N.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Kawasaki, A.

K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Kim, H. J.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Kitahara, H.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Komiyama, S.

O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
[CrossRef]

Kondo, H.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Kutsuwa, T.

O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
[CrossRef]

Kužel, P.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Li, L. M.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Li, Z.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Lin, C.

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Liu, T. A.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

Martin, M. C.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

McKinney, W. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004).
[CrossRef] [PubMed]

Nakajima, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

Neil, G. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Nemec, H.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Pan, C. L.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Park, I.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Planken, P. C. M.

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Prather, D. W.

Qiu, M.

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

Rauly, D.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Richard, J.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Schneider, G. J.

Seno, K.

K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Sharkawy, A.

Sherwin, M. S.

N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Shi, S.

Sokada, K.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Takagi, K.

K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Takeda, M. W.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Tani, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

Tsumura, N.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004).
[CrossRef] [PubMed]

Williams, G. P.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Xavier, P.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

Yao, P.

Yuan, Z.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Zhang, D.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Zhang, Z. Q.

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Zhao, Y.

A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

Appl. Phys. Lett. (10)

O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003).
[CrossRef]

N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

J. Appl. Phys. (1)

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Nature (3)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004).
[CrossRef]

Science (2)

A. Borak, "Toward bridging the terahertz gap with silicon-based lasers," Science 308, 638-639 (2005).
[CrossRef] [PubMed]

D. Clery, "Terahertz on a chip," Science 297, 763 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Typical 2D PC models: (a) air hole array with a triangular lattice in Si (model-I) and, (b) Si pillar array with a rectangular lattice in air (model-II).

Fig. 2.
Fig. 2.

Band gap diagrams for the two models: (a) for model-I, (b) for mode-II.

Fig. 3.
Fig. 3.

Models of the proposed MMI structures with line-defect input waveguides and area-defect multimode regions: (a) model-III with a thickness of 37 μm, and (b) model-IV with a thickness of 100 μm.

Fig. 4.
Fig. 4.

Dispersion curves for the two structure models in Fig. 3. Input waveguides ensure single-mode propagations at frequencies of 0.343(a/λ) and 0.378(a/λ) for both models, (a) for model-III, and (b) for model-IV. Insets are the super-cells for calculations.

Fig. 5.
Fig. 5.

Scheme of the image field distribution in the multimode region. A single image is at Ls and two-fold images are at Lf .

Fig. 6.
Fig. 6.

FDTD simulated results of steady-state electric field distributions in the multimode regions for the continuous THz waves in model-III at (a) 1.66 THz, (b) 1.83 THz, and in model-IV at (c) 1.66 THz, (d) 1.83 THz.

Fig. 7.
Fig. 7.

Schematic diagrams for the ichnography of the Si PC waveguide-based devices: (a) THz wave filter, (b) THz wave splitter. Thickness of the filter and the splitter is 37 μm and 100 μm, respectively. Total length of the filter and splitter is 3534 μm and 4898 μm, respectively. Width of the filter and the splitter is 640 μm and 828 μm, respectively.

Fig. 8.
Fig. 8.

FDTD simulated electric field profiles in the two designed devices. (a) 1.66 THz wave field profile in the filter, (b) 1.83 THz wave field profile in the filter, (c) 1.66 THz wave field profile in the splitter, and (d) 1.83 THz wave field profile in the splitter.

Tables (2)

Tables Icon

Table 1. Results of calculated initial values and the intervals of Ls and Lf at a given operating frequency for model-III

Tables Icon

Table 2. Results of calculated initial values and the intervals of Ls and Lf at a given operating frequency for model-IV

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ψ ( y , z ) = n = 0 p 1 c n φ n ( y ) e j β n z
ψ ( 0,0 ) = n = 0 p 1 c n φ n ( 0 )
= c 0 φ 0 ( 0 ) + c 1 φ 1 ( 0 ) + c 2 φ 2 ( 0 ) + c 3 φ 3 ( 0 ) + ......
ψ ( 0 , L ) = n = 0 p 1 c n φ n ( 0 ) e j β n L
= c 0 φ 0 ( 0 ) e j β 0 L + c 1 φ 1 ( 0 ) e j β 1 L
+ c 2 φ 2 ( 0 ) e j β 2 L + c 3 φ 3 ( 0 ) e j β 3 L + ......
β n L s = k n π with k n = { 1,2,5,7 . . . . . . for mirrore mage 2,4,6,8 . . . . . for direct mage
L s = k n π β n with k n = { 1,2,5,7 . . . . . . for mirrore mage 2,4,6,8 . . . . . for direct mage
L s = kL s 1 with k = 1,2,3 , . . . . . .
Lf 1 = L s 1 2
Lf = ( k 1 2 ) L s 1 with k = 1,2,3 , . . . . . .

Metrics