Abstract

We use two nematic liquid crystal spatial light modulators (SLM’s) to control the vector point spread function (VPSF) of a 1.3 numerical aperture (NA) microscope objective. This is achieved by controlling the polarization and relative phase of the electric field in the objective’s pupil. We measure the resulting VPSF’s for several different pupil field polarization states. By using single fluorescent molecules as local field probes, we are able to map out the focal field distributions and polarization purity of the synthesized fields. We report the achieved field purity and address the experimental issues that currently limit it.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proceedings of the Royal Society of London A 253, 358-379 (1959).
    [CrossRef]
  2. C. J. R. Sheppard and K. G. Larkin, "Vectorial pupil functions and vectorial transfer functions," Optik 107, 79-87 (1997).
  3. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233 901 (2003).
    [CrossRef]
  4. G. Toraldo di Francia, "Nuovo pupille superrisolvente," Atti Fond.Giorgio Ronch 7, 366-372 (1952).
  5. C. C. Sun and C. K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation," Opt. Lett. 28, 99-101 (2003).
    [CrossRef] [PubMed]
  6. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
    [CrossRef] [PubMed]
  7. D. P. Biss and T. G. Brown, "Polarization-vortex-driven second-harmonic generation," Opt. Lett. 28, 923-925 (2003).
    [CrossRef] [PubMed]
  8. K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
    [CrossRef]
  9. T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
    [CrossRef]
  10. L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
    [CrossRef]
  11. B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
    [CrossRef] [PubMed]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
    [CrossRef] [PubMed]
  13. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating Radially Polarized Beams Interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  14. E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
    [CrossRef]
  15. T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
    [CrossRef]
  16. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
    [CrossRef] [PubMed]
  17. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
    [CrossRef]
  18. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, "Method for the generation of arbitrary complex vector wave fronts," Opt. Lett. 27, 1929-1931 (2002).
    [CrossRef]
  19. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
    [CrossRef]
  20. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
    [CrossRef]
  21. Certain commerical equipment are indentified in this paper to foster understanding. Such identification does not imply reommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified are necessarily the best available for this purpose.
  22. C. Ye, "Construction of an Optical Rotator Using Quarter-Wave Plates and an Optical Retarder," Opt. Eng. 34, 3031-3035 (1995).
    [CrossRef]
  23. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London A 253, 358-379 (1959).
    [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980), sixth edition.

2005 (1)

K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

2000 (4)

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
[CrossRef]

J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
[CrossRef] [PubMed]

1998 (1)

L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

C. J. R. Sheppard and K. G. Larkin, "Vectorial pupil functions and vectorial transfer functions," Optik 107, 79-87 (1997).

1996 (1)

1995 (1)

C. Ye, "Construction of an Optical Rotator Using Quarter-Wave Plates and an Optical Retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

1993 (1)

E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

1990 (1)

1959 (2)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

1952 (1)

G. Toraldo di Francia, "Nuovo pupille superrisolvente," Atti Fond.Giorgio Ronch 7, 366-372 (1952).

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

Biss, D. P.

Booth, M. J.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

Brown, T. G.

D. P. Biss and T. G. Brown, "Polarization-vortex-driven second-harmonic generation," Opt. Lett. 28, 923-925 (2003).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

Choudhury, A.

Churin, E. G.

E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Cottrell, D. M.

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Davis, J. A.

Ford, D. H.

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
[CrossRef]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
[CrossRef] [PubMed]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Hossfeld, J.

E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
[CrossRef]

Kawata, S.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

Kimura, W. D.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Laczik, Z. J.

Larkin, K. G.

C. J. R. Sheppard and K. G. Larkin, "Vectorial pupil functions and vectorial transfer functions," Optik 107, 79-87 (1997).

Liu, C. K.

McNamara, D. E.

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
[CrossRef] [PubMed]

L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

Sanchez, E. J.

L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Sarafis, V.

Schadt, M.

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
[CrossRef] [PubMed]

C. J. R. Sheppard and K. G. Larkin, "Vectorial pupil functions and vectorial transfer functions," Optik 107, 79-87 (1997).

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
[CrossRef] [PubMed]

Sonehara, T.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Stalder, M.

Sun, C. C.

Tanaka, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

Tidwell, S. C.

Toraldo di Francia, G.

G. Toraldo di Francia, "Nuovo pupille superrisolvente," Atti Fond.Giorgio Ronch 7, 366-372 (1952).

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Tschudi, T.

E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Wilson, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

Xie, X. S.

L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Ye, C.

C. Ye, "Construction of an Optical Rotator Using Quarter-Wave Plates and an Optical Retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

Appl. Opt. (3)

Giorgio Ronch (1)

G. Toraldo di Francia, "Nuovo pupille superrisolvente," Atti Fond.Giorgio Ronch 7, 366-372 (1952).

J. Microscopy-Oxford (1)

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microscopy-Oxford 200, 105-108 (2000).
[CrossRef]

Jpn. J. Appl. Phys (1)

K. Yoshiki, M. Hashimoto, and T. Araki, "Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. Part 2 44, L1066-L1068 (2005).
[CrossRef]

Opt. Commun. (2)

E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer- Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Opt. Eng. (1)

C. Ye, "Construction of an Optical Rotator Using Quarter-Wave Plates and an Optical Retarder," Opt. Eng. 34, 3031-3035 (1995).
[CrossRef]

Opt. Lett. (4)

Optik (1)

C. J. R. Sheppard and K. G. Larkin, "Vectorial pupil functions and vectorial transfer functions," Optik 107, 79-87 (1997).

Phys. Rev. Lett. (3)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485, (2000).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254, (2001).
[CrossRef] [PubMed]

Proceedings of the Royal Society of London A (2)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London A 253, 358-379 (1959).
[CrossRef]

Ultramicroscopy (1)

L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Other (4)

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233 901 (2003).
[CrossRef]

M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, "Method for the generation of arbitrary complex vector wave fronts," Opt. Lett. 27, 1929-1931 (2002).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980), sixth edition.

Certain commerical equipment are indentified in this paper to foster understanding. Such identification does not imply reommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified are necessarily the best available for this purpose.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

VPSF experimental schematic drawing using a 1.3 NA oil-immersion objective fluorescence microscope. Each SLM is located in an image plane of the objective’s pupil. (ND = Neutral Density filter, Pol. = polarizer, λ/2 = half-wave plate, λ/4 = quarter-wave plate, Ex. and Em. = excitation and emission filters, respectively, and APD=Avalanche Photodiode.)

Fig. 2.
Fig. 2.

Successive images of a single molecule sample for pupil polarizations that are: (A) Linear polarized along x (horizontally), (B) azimuthally-polarized, and (C) radially-polarized. The field of view is 10 microns square.

Fig. 3.
Fig. 3.

A comparison of theoretical and experimental images for pupil polarizations that are: (A) Linear along x̂, (B) azimuthally-polarized, and (C) radially-polarized. Each image is 2 microns square and has been displayed with a normalized gray scale.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T xy = exp ( i θ xy / 2 ) 2 1 i i 1 exp ( i θ xy / 2 ) 0 0 exp ( i θ xy / 2 ) 1 i i 1
· exp ( i ϕ xy / 2 ) 0 0 exp ( i ϕ xy / 2 )
= exp [ i ( ϕ xy + θ xy / 2 ) ] cos ( θ xy / 2 ) sin ( θ xy / 2 ) sin ( ϕ xy / 2 ) cos ( θ xy / 2 )
E ( r ) Ω E ref ( s ) s z e is · r d s

Metrics