Abstract

We present a novel air-bridge subwavelength grating reflector with very high reflectivity be used as a top mirror in a VCSEL structure. We explain the design method, model the structure using both RCWA and FDTD, and predict the characteristics of a Fabry-Perot structure built with this reflector. We describe the fabrication of the suspended grating.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566 (1997).
    [CrossRef] [PubMed]
  2. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627 (1997).
    [CrossRef]
  3. W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron., 10, 478 (2004).
    [CrossRef]
  4. A. S. P. Chang, H. Cao, S. Y. Chou, “Optically tuned subwavelength resonant grating filter with bacteri-orhodopsin overlayer,” in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.
  5. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
    [CrossRef]
  6. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
    [CrossRef]
  7. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron., 6, 978 (2000).
    [CrossRef]
  8. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
    [CrossRef]
  9. M. Maute, G. Bohm, M.-C. Amann, B. Kgel, H. Halbritter, P. Meissner , “Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities,” Opt. Express 13, 8008–8014 (2005).
    [CrossRef] [PubMed]
  10. W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
    [CrossRef]
  11. G. Piazza, K. Castelino, A. P. Pisano, C. J. Chang-Hasnain, “Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser,” Opt. Lett., 30, 896 (2005).
    [CrossRef] [PubMed]
  12. Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
    [CrossRef]
  13. M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
    [CrossRef]
  14. Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
    [CrossRef]
  15. J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
    [CrossRef]
  16. A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
    [CrossRef]
  17. D. W. Peters, S. A. Kemme, G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A, 21, 981 (2004).
    [CrossRef]
  18. R. Petit, L. C. Botten, “Electromagnetic theory of gratings” (Springer-Verlag, Berlin; New York, 1980).
  19. M. Neviere, E. Popov, “Light Propagation in Periodic Media, Differential Theory and Design” (Marcel Dekker Inc., New York, 2004).
  20. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  21. Lifeng Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  22. A. Taflove, S. C. Hagness, “Computational electrodynamics : the finite-difference time-domain method. Boston” (Artech House, 2000).

2005 (2)

2004 (4)

D. W. Peters, S. A. Kemme, G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A, 21, 981 (2004).
[CrossRef]

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron., 10, 478 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

2003 (2)

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

2001 (2)

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

2000 (2)

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron., 6, 978 (2000).
[CrossRef]

1999 (1)

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

1997 (3)

1996 (1)

Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
[CrossRef]

1986 (1)

Abraham, P.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Amann, M. C.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Amann, M.-C.

Arai, M.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Azimi, M.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Bohm, G.

Botten, L. C.

R. Petit, L. C. Botten, “Electromagnetic theory of gratings” (Springer-Verlag, Berlin; New York, 1980).

Bowers, J.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Bowers, J. E.

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

Cao, H.

A. S. P. Chang, H. Cao, S. Y. Chou, “Optically tuned subwavelength resonant grating filter with bacteri-orhodopsin overlayer,” in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.

Castelino, K.

Chang, A. S. P.

A. S. P. Chang, H. Cao, S. Y. Chou, “Optically tuned subwavelength resonant grating filter with bacteri-orhodopsin overlayer,” in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.

Chang-Hasnain, C. J.

G. Piazza, K. Castelino, A. P. Pisano, C. J. Chang-Hasnain, “Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser,” Opt. Lett., 30, 896 (2005).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron., 6, 978 (2000).
[CrossRef]

Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

Cheng, C. C.

Chih-Cheng, L.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Chiu, Y. J.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Chou, H. P.

Chou, S. Y.

A. S. P. Chang, H. Cao, S. Y. Chou, “Optically tuned subwavelength resonant grating filter with bacteri-orhodopsin overlayer,” in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.

Fainman, Y.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron., 10, 478 (2004).
[CrossRef]

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627 (1997).
[CrossRef]

Gaylord, T. K.

Geske, J.

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

Hadley, G. R.

Hagness, S. C.

A. Taflove, S. C. Hagness, “Computational electrodynamics : the finite-difference time-domain method. Boston” (Artech House, 2000).

Hains, C. P.

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

Halbritter, H.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

Huang, X. D.

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

Iwata, K.

Jayaraman, V.

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

Julian, C.

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

Kai, Y.

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

Karim, A.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Kemme, S. A.

Kgel, B.

Kikuta, H.

Kondo, T.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Koyama, F.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Lackner, M.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Li, G. S.

Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
[CrossRef]

Li, Lifeng

Lofgreen, D.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

Matsutani, A.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Maute, M.

Meissner, P.

Miyamoto, T.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Moharam, M. G.

Nakagawa, W.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron., 10, 478 (2004).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

Neviere, M.

M. Neviere, E. Popov, “Light Propagation in Periodic Media, Differential Theory and Design” (Marcel Dekker Inc., New York, 2004).

Ohira, Y.

Okuno, Y. L.

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

Onomura, A.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

Ortsiefer, M.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Peidong, W.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Peters, D. W.

Petit, R.

R. Petit, L. C. Botten, “Electromagnetic theory of gratings” (Springer-Verlag, Berlin; New York, 1980).

Piazza, G.

Piprek, J.

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

Pisano, A. P.

Popov, E.

M. Neviere, E. Popov, “Light Propagation in Periodic Media, Differential Theory and Design” (Marcel Dekker Inc., New York, 2004).

Rosskopf, J.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Sacks, R. N.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Salvekar, A. A.

Scherer, A.

Shau, R.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Sun, P. C.

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, “Computational electrodynamics : the finite-difference time-domain method. Boston” (Artech House, 2000).

Tayebati, P.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Totschnig, G.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Tyan, R. C.

Vakhshoori, D.

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

Winter, F.

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Wupen, Y.

Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
[CrossRef]

Xu, F.

Yunfei, D.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

Yuxin, Z.

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, R. N. Sacks, “Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897 (1999).
[CrossRef]

J. Geske, Y. L. Okuno, J. E. Bowers, V. Jayaraman, “Vertical and lateral heterogeneous integration,” Appl. Phys. Lett. 79, 1760 (2001).
[CrossRef]

Electron. Lett. (1)

A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, J. Bowers, “Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing,” Electron. Lett. 37, 431 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron., 9, 1367 (2003).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron., 6, 978 (2000).
[CrossRef]

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron., 10, 478 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett., 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett., 16, 518 (2004).
[CrossRef]

Y. Wupen, G. S. Li, C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photonics Technol. Lett., 8, 4 (1996).
[CrossRef]

Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, C. Julian, “Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror,” IEEE Photonics Technol. Lett., 12, 377 (2000).
[CrossRef]

J. Opt. Soc. Am. A (4)

Meas. Sci. Technol. (1)

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol., 14, 101, (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

A. S. P. Chang, H. Cao, S. Y. Chou, “Optically tuned subwavelength resonant grating filter with bacteri-orhodopsin overlayer,” in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.

R. Petit, L. C. Botten, “Electromagnetic theory of gratings” (Springer-Verlag, Berlin; New York, 1980).

M. Neviere, E. Popov, “Light Propagation in Periodic Media, Differential Theory and Design” (Marcel Dekker Inc., New York, 2004).

A. Taflove, S. C. Hagness, “Computational electrodynamics : the finite-difference time-domain method. Boston” (Artech House, 2000).

Supplementary Material (1)

» Media 1: MOV (234 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Resonant grating excitation leading to high reflection. a) grating is separate from guiding layer, b) grating is the guiding layer.

Fig. 2.
Fig. 2.

SWG Reflector geometry.

Fig. 3.
Fig. 3.

Nominal design performance (linear reflection value). Movie shows performance for various duty factors (Air-Reflectivity.mov - 232KB).

Fig. 4.
Fig. 4.

Impact of lithographic parameters of SWGR performance. Scale shows reflection isolation in dB.

Fig. 5.
Fig. 5.

Lithographic tuning of the SWGR reflectivity peak.

Fig. 6.
Fig. 6.

Impact of low index layer thickness on reflectivity.

Fig. 7.
Fig. 7.

Impact of duty factor variations on reflection.

Fig. 8.
Fig. 8.

Comparison of RCWA with 2D and 3D FDTD models.

Fig. 9.
Fig. 9.

Reflection isolation for infinite and various finite structures (2D FDTD) in a) Reflectance, b) Reflection Isolation.

Fig. 10.
Fig. 10.

SWGR - DBR structure geometry.

Fig. 11.
Fig. 11.

SWGR-based FP cavity performance for a) α = 0.68 and b) α = 0.85.

Fig. 12.
Fig. 12.

Cavity Q for different SWGR periods at 850nm, for a) α = 0.68 and b) α = 0.85.

Fig. 13.
Fig. 13.

SEM of fabrication suspended SWG in AlGaAs.

Metrics