Abstract

An array of square current-carrying wires is proposed to construct a two-dimensional (2D) array of surface magneto-optical traps and Ioffe magnetic ones for realizing a 2D lattice of Bose-Einstein condensations (BECs) on an atom chip. Our study shows that when a vertical homogeneous bias magnetic field is only used, the wires will form a 2D array of quadrupole magnetic traps, which can be used to construct 2D lattice of surface magneto-optical micro-traps. While another horizontal homogeneous bias field is added simultaneously, the above 2D array of quadrupole micro-traps will be changed as an array of surface Ioffe micro-traps, which can be used to form a 2D magnetic lattice and then realize a 2D array of BECs. The dynamic loading process of cold 87Rb atoms from each micro-MOT into Ioffe micro-trap is studied by using Monte-Carlo simulations, and our results show that the scheme can be used to realize a natural and effective loading of cold atoms from 2D array of micro-MOTs into 2D array of Ioffe micro-traps, and the loading efficiency can be reach ~65%. Moreover, the positions of each BEC (or MOT) in 2D array of magnetic micro-traps can be controlled by adjusting the currents in the wires or by changing the additional vertical bias field.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Anderson and J.R. Ensher, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995)
    [Crossref] [PubMed]
  2. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
    [Crossref] [PubMed]
  3. C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
    [Crossref] [PubMed]
  4. S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
    [Crossref] [PubMed]
  5. G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
    [Crossref] [PubMed]
  6. D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
    [Crossref]
  7. F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
    [Crossref]
  8. ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
    [Crossref] [PubMed]
  9. A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
    [Crossref]
  10. T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
    [Crossref]
  11. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
    [Crossref]
  12. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
    [Crossref] [PubMed]
  13. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
    [Crossref]
  14. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
    [Crossref] [PubMed]
  15. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
    [Crossref] [PubMed]
  16. B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Science 282, 1686–1689 (1998)
    [Crossref] [PubMed]
  17. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
    [Crossref] [PubMed]
  18. M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)
  19. C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)
  20. A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003)
    [Crossref]
  21. A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
    [Crossref]
  22. T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
    [Crossref]
  23. M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)
  24. E. A. Ostrovskaya and Y. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 92, 0180405-1–4 (2004)
    [Crossref]
  25. J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
    [Crossref]
  26. F. Gori, “Flattened gaussian beams,” Opt. Commun.,  107, 335–341 (1994)
    [Crossref]
  27. Y. Li, “Flat-topped light beams with non-circular cross-sections,” J. Mod. Opt. 50, 1957–1966 (2003)
    [Crossref]
  28. C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
    [Crossref] [PubMed]
  29. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
    [Crossref]
  30. R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)
  31. M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
    [Crossref]
  32. J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
    [Crossref]
  33. Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
    [Crossref] [PubMed]
  34. J. Reichel, “Microchip traps andBose-Einstein condensation,” Appl. Phys. B 75, 469–487 (2002)
    [Crossref]
  35. J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
    [Crossref]
  36. Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
    [Crossref]
  37. H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)
  38. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
    [Crossref] [PubMed]

2005 (4)

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

2004 (2)

M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)

E. A. Ostrovskaya and Y. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 92, 0180405-1–4 (2004)
[Crossref]

2003 (6)

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003)
[Crossref]

Y. Li, “Flat-topped light beams with non-circular cross-sections,” J. Mod. Opt. 50, 1957–1966 (2003)
[Crossref]

Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
[Crossref]

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)

2002 (3)

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

J. Reichel, “Microchip traps andBose-Einstein condensation,” Appl. Phys. B 75, 469–487 (2002)
[Crossref]

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

2001 (7)

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
[Crossref] [PubMed]

2000 (4)

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

1999 (1)

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

1998 (4)

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
[Crossref]

B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Science 282, 1686–1689 (1998)
[Crossref] [PubMed]

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

1996 (1)

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

1995 (3)

M. H. Anderson and J.R. Ensher, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995)
[Crossref] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
[Crossref] [PubMed]

1994 (1)

F. Gori, “Flattened gaussian beams,” Opt. Commun.,  107, 335–341 (1994)
[Crossref]

1990 (1)

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

1989 (1)

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Aizenman, M.

M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)

Anderson, B. P.

B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Science 282, 1686–1689 (1998)
[Crossref] [PubMed]

Anderson, M. H.

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

M. H. Anderson and J.R. Ensher, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995)
[Crossref] [PubMed]

Andersson, L. M.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Andrews, M. R.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Aspect, A.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Bar-Joseph, I.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Barrelet, C. J.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Bloch, I.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

Boiron, D.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Bradley, C. C.

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
[Crossref] [PubMed]

Brecha, R. J.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Briegel, H. J.

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

Browaeys, A .

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Calaro, T.

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

Cassettari, D.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Cirac, J. I.

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

Claussen, N. R.

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

Cohen-Tannoudji, C.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Cornell, E. A.

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

Cornish, S. L.

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

Corwin, K. L

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

Curtis, E. A.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Davis, K. B.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Drndic, M.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Durfee, D. S.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Ensher, J.R.

M. H. Anderson and J.R. Ensher, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995)
[Crossref] [PubMed]

Eriksson, S.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Esslinger, T.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

Ferrari, G.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Folman, R.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Fortagh, J.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

Fried, D. G.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Gao, W.

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

Goati, G.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Gori, F.

F. Gori, “Flattened gaussian beams,” Opt. Commun.,  107, 335–341 (1994)
[Crossref]

Grabowski, A.

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003)
[Crossref]

Greiner, M.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

Greytak, T. J.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Griesmaier, A

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

Grimm, R.

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Grisenti, R. E.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

Groth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Gunther, A.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

Hall, B. V.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Hänsch, T. W.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

Hänsel, W.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

Hensler, S.

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

Herbig, J.

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Hessmo, B.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Hinds, E. A.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Hofferberth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Hommelhoff, P.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

Honda, K.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Hu, J.

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

Hulet, R. G.

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
[Crossref] [PubMed]

Inguscio, M.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Jaksch, D.

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

Johnson, K. S.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Julsgaard, B.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
[Crossref] [PubMed]

Kasevich, M. A.

B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Science 282, 1686–1689 (1998)
[Crossref] [PubMed]

Kemmler, M.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

Ketterle, W.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Killian, T. C.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Kivshar, Y. S.

E. A. Ostrovskaya and Y. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 92, 0180405-1–4 (2004)
[Crossref]

Kleiner, R.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

Kleppner, D.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Koelle, D.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

Komori, K.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Kozhekin, A.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
[Crossref] [PubMed]

Kraft, S.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

Krüger, P.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Kumakura, M.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Kurn, D. M.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Landhuis, D.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Leduc, M.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Léonard, J.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Lett, P. D.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Li, Y.

Y. Li, “Flat-topped light beams with non-circular cross-sections,” J. Mod. Opt. 50, 1957–1966 (2003)
[Crossref]

Lieb, E. H.

M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)

Liu, N.

Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
[Crossref]

Llorente Garcia, I.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Lu, Z. T.

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

Maier, T.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Maki, K.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Mandel, O.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

Manson, J. R.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Mark, M.

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Mewes, M. O.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Modugno, G.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

Moss, S. C.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Nagerl, H. C.

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Ni, Y.

Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
[Crossref]

Nowak, S.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Olshanii, M.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

Ostrovskaya, E. A.

E. A. Ostrovskaya and Y. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 92, 0180405-1–4 (2004)
[Crossref]

Ott, H.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

Perales, F.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Pfau, T.

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003)
[Crossref]

Phillips, W. D.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Polzik, E. S.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
[Crossref] [PubMed]

Poupard, J.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Prentiss, M.

M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Rasel, E.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Reichel, J.

J. Reichel, “Microchip traps andBose-Einstein condensation,” Appl. Phys. B 75, 469–487 (2002)
[Crossref]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

Renn, M. J.

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

Retter, J. A.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Roberts, J. L.

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

Rolston, S. L.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Rooijakkers, W.

M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)

Sackett, C. A.

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
[Crossref] [PubMed]

Santos, F. P. D.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Sauer, B. E.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Savas, T. A.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

Schmiedmayer, J.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

Schollkopf, W.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Schumm, T.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Seiringer, R.

M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)

Simoni, A.

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

Sinclair, C. D. J.

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Sirjean, ARobert. O.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

Smith, H. I.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Stuhler, J.

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

Takahashi, Y.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Takano, T.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Takasu, Y.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Tanner, C. E.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Thywissen, J. H.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Toennies, J. P.

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

Unnikrishnan, C. S.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

van Druten, N. J.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

Vengalattore, M.

M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)

Wang, J.

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

Wang, Y.

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
[Crossref]

Watts, R. N.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Weber, T.

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

Weetervelt, R. M.

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Werner, J.

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

Westbrook, C. I.

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Westervelt, R. M.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

Wieman, C. E.

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

Wildermuth, S.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Willmann, L.

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

Yabuzaki, T.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

Yin, J.

Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
[Crossref]

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
[Crossref]

Zabow, G.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

Zhu, Y.

J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
[Crossref]

Zimmermann, C.

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

Zoller, P.

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

Appl. Phys. B (1)

J. Reichel, “Microchip traps andBose-Einstein condensation,” Appl. Phys. B 75, 469–487 (2002)
[Crossref]

Appl. Phys. Lett. (1)

M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998)
[Crossref]

Eur. Phys. J. D (2)

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D 7, 361–367 (1999)
[Crossref]

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003)
[Crossref]

J. Mod. Opt. (2)

Y. Li, “Flat-topped light beams with non-circular cross-sections,” J. Mod. Opt. 50, 1957–1966 (2003)
[Crossref]

H. J. Briegel, T. Calaro, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum computing with neutral atoms,” J. Mod. Opt. 47, 415–451 (2000)

J. Opt. B: Quantum Semiclass. Opt. (1)

Y. Ni, N. Liu, and J. Yin, “Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel,” J. Opt. B: Quantum Semiclass. Opt. 5, 300–308 (2003)
[Crossref]

J. Opt. Soc. Am. (1)

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B  6, 2084 (1989)
[Crossref]

Nature (3)

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001)
[Crossref] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on amicroelectronic chip,” Nature 413, 498–501 (2001)
[Crossref] [PubMed]

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002)
[Crossref] [PubMed]

Nature Phys. (1)

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nature Phys. 1, 57–62 (2005)
[Crossref]

Opt. Commun. (2)

J. Yin, W. Gao, J. Hu, and Y. Wang, “Magnetic surface microtraps for realizing an array ofalkali atomic Bose-Einstein condensates or Bose clusters,” Opt. Commun. 206, 99–113 (2002)
[Crossref]

F. Gori, “Flattened gaussian beams,” Opt. Commun.,  107, 335–341 (1994)
[Crossref]

Phys. Rev. (3)

M. Aizenman, E. H. Lieb, and R. Seiringer, “Bose-Einstein quantum phase transition in an optical lattice model,” Phys. Rev., A  70, 023612-1–12 (2004)

R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission gratings: The role of imperfections,” Phys. Rev. A  61, 033608-1–15 (2000)

C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev., A  72, 031603-1–4 (2005)

Phys. Rev. A (1)

J. Yin, Y. Zhu, and Y. Wang, “Evanescent light-wave atomic funnel: A tandem hollow-fiber, hollow-beam approach,” Phys. Rev. A 57, 1957–1966 (1998)
[Crossref]

Phys. Rev. A. (1)

M. Vengalattore, W. Rooijakkers, and M. Prentiss, “Ferromagnetic atom guide with situ loading,” Phys. Rev. A. 66, 053403-1–4 (2003)

Phys. Rev. Lett. (14)

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001)
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms,” Phys. Rev. Lett. 91, 040404-1–4 (2003)
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold Atoms using nanofabricated surfaces: Atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000)
[Crossref] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-1–4 (2001)
[Crossref]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995)
[Crossref] [PubMed]

C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 75, 1687–1690 (1995)
[Crossref] [PubMed]

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Stable 85Rb Bose-Einstein condensates with widely tunable interactions,” Phys. Rev. Lett. 85, 1795–1798 (2000)
[Crossref] [PubMed]

D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, “Bose-Einstein condensation of atomic hydrogen,” Phys. Rev. Lett. 81, 3811–3814 (1998)
[Crossref]

F. P. D. Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium,” Phys. Rev. Lett. 86, 3459–3462 (2001)
[Crossref]

A Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of chromium,” Phys. Rev. Lett. 94, 1604011–4 (2005)
[Crossref]

Z. T. Lu, K. L Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996)
[Crossref] [PubMed]

E. A. Ostrovskaya and Y. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 92, 0180405-1–4 (2004)
[Crossref]

A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh, “Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip,” Phys. Rev. Lett. 95, 170405-1–4 (2005)
[Crossref]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990)
[Crossref] [PubMed]

Science (5)

T. Weber, J. Herbig, M. Mark, H. C. Nagerl, and R. Grimm, “Bose-Einstein Condensation of Cesium,” Science 299, 232–235 (2003)
[Crossref]

ARobert. O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein Condensate of Metastable Atoms,” Science 292, 461–464 (2001)
[Crossref] [PubMed]

G. Modugno, G. Ferrari, G. Goati, R. J. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms bysympathetic cooling,” Science 294, 1320–1322 (2001)
[Crossref] [PubMed]

B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Science 282, 1686–1689 (1998)
[Crossref] [PubMed]

M. H. Anderson and J.R. Ensher, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995)
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of 2D array of surface magneto-optical or magnetic micro-traps by using a 2D array of square current-carrying wires combined with additional bias magnetic fields

Fig. 2.
Fig. 2.

Magnetic field contours of 2D array of magnetic quadrupole traps on the (a) xoy plane (Z0= 1.62mm) and (b) xoz plane . The white zone presents the zero B-field value, and the interval of the contours is 0.1G.

Fig. 3.
Fig. 3.

(a) Dependence of the position z0 of each MOT in the z-direction on the current I in the wire or on the vertical bias field). The left vertical axis presents the current value in the wire, and the right one presents the additional bias field B Z0 value. (b) Distributions of the magnetic fields their field gradients in the x and z directions. The distributions of the magnetic field and its gradient in the y direction are the same as that in the x direction.

Fig. 4.
Fig. 4.

Magnetic field contours of 2D Ioffe micro-traps on the (a) xoy plane and (b) xoz plane. The white zone shows the minimum B-field value, and the interval of the contours is 2G.

Fig. 5.
Fig. 5.

Distributions of the magnetic fields from 2D Ioffe traps and their field gradients and curvatures in the (a) x direction, (b) y direction, and (c) z direction

Fig. 6.
Fig. 6.

Evolution of the magnetic field contours (left figures) in (a) xoy plane and (b) xoz plane when each micro-well is changed from a micro-MOT to Ioffe micro-trap for (1) t= 0; (2) t= 50ms; (3) t= 100ms; (4) t= 150ms; and (5) t= 200ms. While right figures show the spatial distributons of cold atomic cloud from Monte-Carlo simulations.

Fig. 7.
Fig. 7.

(a) Dependence of relative atomic number N/N 0 (circular points) and its density n/n 0 (triangular points) in each micro-trap on the evolution time t during the loading process of cold atoms from each micro-MOT to each Ioffe micro-trap. Here N0 and n0 are the atomic number and its density in each micro-trap when t= 0. (b) Dependence of the temperatures of cold atoms in each micro-trap on the evolution time t during the loading process of cold atoms from each micro-MOT to each Ioffe micro-trap. The data points are the results from Monte-Carlo simulations, and the solid lines are the theoretical results predicted by Eq.(10)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

B x = μ 0 I x ̂ 4 π m = N N n = N N ( a + mc a + mc z ( ( x + a nc ) 2 + ( y y ) 2 + z 2 ) 3 / 2 dx ' + a + mc a + mc z ( ( x a nc ) 2 + ( y y ) 2 + z 2 ) 3 / 2 dy ' )
B y = μ 0 I y ̂ 4 π m = N N n = N N ( a + nc a + nc z ( ( x + x ' ) 2 + ( y a mc ) 2 + z 2 ) 3 / 2 dx ' + a + nc a + nc z ( ( x x ' ) 2 + ( y + a mc ) 2 + z 2 ) 3 / 2 dx ' ) ,
B z = μ 0 I z ̂ 4 π m = N N n = N N ( a + mc a + mc ( x + a nc ) ( ( x + a nc ) 2 + ( y y ' ) 2 + z 2 ) 3 / 2 dy ' + a + mc a + mc ( x a nc ) ( ( x a nc ) 2 + ( y y ' ) 2 + z 2 ) 3 / 2 dy ' + a + nc a + nc y a mc ( ( x x ' ) 2 + ( y a mc ) 2 + z 2 ) 3 / 2 dx ' + a + nc a + nc y + a mc ( ( x x ' ) 2 + ( y + a mc ) 2 + z 2 ) 3 / 2 dx ' ) B Z 0 z ̂
2 μ 0 Ia 2 π ( a 2 + z 0 2 ) 2 a 2 + z 0 2 = B Z 0 .
{ B x = B y 26 μ 0 I 2 πa 2 B z 51 μ 0 I 2 πa 2 ( G / cm ) .
N = ( 1 6 ) ( V 2 3 σ ) v c 4 ( m 2 k B T 0 ) 2 ,
k B T = ħ Γ 4 1 + 2 q ( I I s ) + ( 2 δ Γ ) 2 2 δ Γ ,
U mag ( r ) = μ B ( r ) = g F m F μ B B ( r ) ,
I = 3 + 60 t , B x 0 = 20 t , B z 0 = 0.8 10 t + 1300 t 2 ,
ω = 127 + 25 I , ω y = 37 + 27 I 5.7 B x 0 , ω z = 12.1 + 49.3 I 1.2 B z 0 ,

Metrics