Abstract

We show the successful fabrication and operation of photonic crystal waveguides on SOI, with lower silicon dioxide cladding remaining, using 193 nm DUV lithography. We demonstrate that 193 nm lithography gives more process latitude, allowing a wider range of periods and hole diameters to be printed, as well as reducing the optical proximity effect to a minimum. The smallest period /hole size variation printed successfully was 280 nm and 150 nm, which is very promising for ambitious future designs. Lowest losses obtained were 14.2 ± 2.0 dB/cm for a W1 waveguide in a 400 nm lattice with an r/a of 0.25 at a frequency of 0.257 a/λ, which approaches the best losses reported for air-bridge type W1s.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,1551-1561 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551.
    [CrossRef] [PubMed]
  2. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
    [CrossRef]
  3. E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
    [CrossRef]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  5. Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
    [CrossRef] [PubMed]
  6. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
    [CrossRef]
  7. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  8. M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
    [CrossRef]
  9. H. Ryu, M. Notomi, G. Kim, and Y. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12,1708-1719 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708.
    [CrossRef] [PubMed]
  10. Yu. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538-4544 (2004).
    [CrossRef]

2005 (5)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

2004 (3)

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

2002 (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Ayre, M.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Davies, T.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

Dulkeith, E.

E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Dumon, P.

Hamann, H. F.

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

Karle, T. J.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

Kim, G.

Krauss, T. F.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,1551-1561 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551.
[CrossRef] [PubMed]

Lee, Y.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

McNab, S. J.

E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Yu. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538-4544 (2004).
[CrossRef]

Mitsugi, S.

Moll, N.

Yu. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538-4544 (2004).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Notomi, M.

O'Boyle, M.

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

Ryu, H.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,1551-1561 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551.
[CrossRef] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Vlasov, Yu. A.

E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Yu. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538-4544 (2004).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

Wu, L.

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. Ayre, T. J. Karle, L. Wu, T. Davies, and T. F. Krauss, "Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend," IEEE J. Sel. Areas Commun. 23, 1390-1395 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
[CrossRef]

J. Appl. Phys. (1)

Yu. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538-4544 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nature (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Phys Rev B. (1)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys Rev B. 72, 161318 (2005).
[CrossRef]

Phys. Rev. B (1)

E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross section of PhC crystal holes, period 280nm and diameter 152nm.

Fig. 2.
Fig. 2.

Top view of a photonic crystal lattice printed without proximity correction using 193 nm lithography. The top line of holes constitutes a row of border holes; where as the rest of the holes can be considered as bulk lattice. Image analysis conducted by fitting a best circle to each hole yielded a size of 194.3 ± 2.3 nm for the border holes, and 195.3 ± 2.0 nm for the bulk lattice holes. The optical proximity effect is therefore smaller than the hole size variation and thus negligible.

Fig. 3.
Fig. 3.

Propagation loss for W1 PhC waveguide determined by the cut-back method.

Fig. 4.
Fig. 4.

Bandstructure and corresponding transmission window of the asymmetric oxide-clad W1 waveguide. The spectrum corresponds to the loss determined by the cut-back method across seven lengths.

Fig. 5.
Fig. 5.

TE transmission (in dB/cm) and corresponding TM conversion (in arb. units). Both traces were obtained for TE excitation.

Metrics