Abstract

Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 μm2 photonic crystal region.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. S. G. Johnson and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823–5835 (2003).
    [Crossref]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
    [Crossref]
  5. H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
    [Crossref]
  6. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [Crossref]
  7. A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
    [Crossref] [PubMed]
  8. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
    [Crossref]
  9. T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325–2327 (2002).
    [Crossref]
  10. B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
    [Crossref]
  11. C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
    [Crossref]
  12. T. Matsumoto and T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
    [Crossref]
  13. A. Bakhtazad and A. G. Kirk, “1-D slab photonic crystal k-vector superprism demultiplexer analysis, and design,” Optics Express 13, 5472–5482 (2005).
    [Crossref] [PubMed]
  14. B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: Analysis and design,” (submitted to Applied Optics).
  15. J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
    [Crossref]
  16. T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
    [Crossref] [PubMed]
  17. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
    [Crossref] [PubMed]
  18. B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23, 1522–1532 (2005).
    [Crossref]
  19. Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Optics Lett. 30, 2308–2310 (2005).
    [Crossref]
  20. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
    [Crossref]
  21. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
    [Crossref] [PubMed]
  22. R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
    [Crossref]
  23. B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” J. Select. Areas Commun. 23, 1355–1364 (2005).
    [Crossref]
  24. A. S. Jugessur, “Integration of a 2-D photonic crystal superprism with 1-D photonic crystal microcavity filters for high channel selectivity,” TuB5 in LEOS 2005, Sydney, Australia (2005).

2005 (6)

A. Bakhtazad and A. G. Kirk, “1-D slab photonic crystal k-vector superprism demultiplexer analysis, and design,” Optics Express 13, 5472–5482 (2005).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
[Crossref]

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
[Crossref] [PubMed]

B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23, 1522–1532 (2005).
[Crossref]

Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Optics Lett. 30, 2308–2310 (2005).
[Crossref]

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” J. Select. Areas Commun. 23, 1355–1364 (2005).
[Crossref]

2004 (4)

C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
[Crossref]

T. Matsumoto and T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
[Crossref]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

2003 (5)

L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[Crossref]

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823–5835 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

2002 (1)

T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325–2327 (2002).
[Crossref]

2000 (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

1993 (1)

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Adibi, A.

B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23, 1522–1532 (2005).
[Crossref]

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” J. Select. Areas Commun. 23, 1355–1364 (2005).
[Crossref]

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[Crossref]

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: Analysis and design,” (submitted to Applied Optics).

Alerhand, O. L.

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Baba, T.

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
[Crossref] [PubMed]

T. Matsumoto and T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
[Crossref]

T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325–2327 (2002).
[Crossref]

Baehr-Jones, T.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
[Crossref]

Bakhtazad, A.

A. Bakhtazad and A. G. Kirk, “1-D slab photonic crystal k-vector superprism demultiplexer analysis, and design,” Optics Express 13, 5472–5482 (2005).
[Crossref] [PubMed]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Bromme, K. D.

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Cassan, E.

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Fedeli, J. M.

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Foteinopolou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Fujita, S.

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
[Crossref] [PubMed]

He, S.

Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Optics Lett. 30, 2308–2310 (2005).
[Crossref]

Joannopoulos, J. D.

C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823–5835 (2003).
[Crossref]

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823–5835 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

Jugessur, A. S.

A. S. Jugessur, “Integration of a 2-D photonic crystal superprism with 1-D photonic crystal microcavity filters for high channel selectivity,” TuB5 in LEOS 2005, Sydney, Australia (2005).

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

Kirk, A. G.

A. Bakhtazad and A. G. Kirk, “1-D slab photonic crystal k-vector superprism demultiplexer analysis, and design,” Optics Express 13, 5472–5482 (2005).
[Crossref] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

Krauss, T. F.

Laval, S.

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Luo, C.

C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

Lupu, A.

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Lyan, P.

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Matsumoto, T.

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
[Crossref] [PubMed]

T. Matsumoto and T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004).
[Crossref]

T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325–2327 (2002).
[Crossref]

Mazilu, M.

Meade, R. D.

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Melhaoui, L. El

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Momeni, B.

B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23, 1522–1532 (2005).
[Crossref]

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” J. Select. Areas Commun. 23, 1355–1364 (2005).
[Crossref]

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[Crossref]

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: Analysis and design,” (submitted to Applied Optics).

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Rappe, A. M.

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Ruan, Z.

Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Optics Lett. 30, 2308–2310 (2005).
[Crossref]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

Scherer, A.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
[Crossref]

Soljacic, M.

C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
[Crossref]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Tamamura, T.

Thylén, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

Witzens, J.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
[Crossref]

Wu, L.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Acta Materialia (1)

S. G. Johnson and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823–5835 (2003).
[Crossref]

Appl. Phys. B (1)

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[Crossref]

Appl. Phys. Lett. (2)

T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325–2327 (2002).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

J. Lightwave Technol. (4)

J. Select. Areas Commun. (1)

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” J. Select. Areas Commun. 23, 1355–1364 (2005).
[Crossref]

Optics Express (3)

A. Bakhtazad and A. G. Kirk, “1-D slab photonic crystal k-vector superprism demultiplexer analysis, and design,” Optics Express 13, 5472–5482 (2005).
[Crossref] [PubMed]

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Optics Express 13, 10768–10776 (2005).
[Crossref] [PubMed]

A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Optics Express 12, 5690–5696 (2004).
[Crossref] [PubMed]

Optics Lett. (2)

C. Luo, M. Soljacic, and J. D. Joannopoulos, “Superprism effect based on phase velocities,” Optics Lett. 29, 745–747 (2004).
[Crossref]

Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Optics Lett. 30, 2308–2310 (2005).
[Crossref]

Phys. Rev. B (3)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 45115-1–15 (2003).
[Crossref]

R. D. Meade, A. M. Rappe, K. D. Bromme, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

Phys. Rev. E (1)

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed cross-talk,” Phys. Rev. E 71, 026604-1–9 (2005).
[Crossref]

Phys. Rev. Lett. (4)

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-1–4 (2004).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401-1–4 (2003).
[Crossref] [PubMed]

Other (2)

A. S. Jugessur, “Integration of a 2-D photonic crystal superprism with 1-D photonic crystal microcavity filters for high channel selectivity,” TuB5 in LEOS 2005, Sydney, Australia (2005).

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: Analysis and design,” (submitted to Applied Optics).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of a square lattice photonic crystal fabricated in SOI. (b) Schematic plot of superprism demultiplexing in conventional configuration. (c) Schematic plot of diffraction compensation (PC is designed in negative diffraction regime). (d) Schematic plot of negative refraction at the interface of PC.

Fig. 2.
Fig. 2.

Calculated contours of constant frequency of the first TE-like modes in a planar square lattice photonic crystal (r/a = 0.25 on an SOI wafer) with one principal lattice direction (a) at 45-degrees with respect to the interface, and (b) parallel to the interface of the photonic crystal with incident region. Regions of band structure with different dispersion properties are marked as gray for negative diffraction (d 2 kl /dkt2 < 0) [18]; red for strong superprism effect (∂θ g/∂α > 50, where θ g is the angle of group velocity and α is the angle of incidence [10]); blue for low third-order diffraction (small (∂ne /∂α, where ne is the effective diffraction index [18]), and hatched for regions that cannot be excited from the input slab waveguide. The loci where these three colored regions overlap have strong superprism effect, negative diffraction, and negative refraction, simultaneously.

Fig. 3.
Fig. 3.

(a) Top view image of the preconditioned demultiplexing device is shown. (b) Photonic crystal region and output waveguides (highlighted region in (a) are schematically depicted. Insets show SEM images of a portion of the PC structure at the input interface (bottom), and at the entrance to output waveguides (top) to show the details of the periodic structure. Beam propagation and spatial separation process are schematically shown for two channels (red and blue). The photonic crystal structure is a square lattice which is 45°-rotated with respect to the input interface of the PC.

Fig. 4.
Fig. 4.

Setup for characterization of preconditioned superprism-based photonic crystal demultiplexer is shown.

Fig. 5.
Fig. 5.

(a) Output image for TE-like polarization shows power distribution in the output waveguides for four discrete wavelengths. (b) For the same wavelength as part (a), power distributions in the output waveguides for TM-like polarization are shown. It can be seen that for this polarization diffraction compensation does not occur, and output beams have extended distributions. Moreover, there is negligible interference from this polarization at the location of demultiplexing channels highlighted in this figure.

Fig. 6.
Fig. 6.

(a) Measured transmitted powers of four output waveguides (channels 5, 7, 9, and 11) are plotted. (b) Channel response for the waveguides in (a) are shown. In this case, incidence is at 15 deg. (middle input waveguide is used for excitation), and input wave is in TE-like polarization.

Metrics