Abstract

The enhanced transmission of light through subwavelength-size holes in a metal plate is well-known to be associated with surface plasmons. We have undertaken a systematic theoretical study of several strategies for applying these plasmon effects in a near-field optical readout system using an exact Green’s tensor formulation. Based on the results of our simulations with light of wavelength λ = 500 nm, data structures separated by 120 nm could be clearly resolved, and asymmetries of about ±10 nm in the optical readout system could be tolerated without serious degradation of the performance. Advantages and disadvantages of each strategy are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
    [Crossref]
  2. J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
    [Crossref]
  3. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
    [Crossref]
  4. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
    [Crossref]
  5. G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
    [Crossref]
  6. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [Crossref] [PubMed]
  7. K.C. Pohlmann, The Compact Disc Handbook, 2nd ed. (Oxford University Press, Oxford, 1992).
  8. T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
    [Crossref]
  9. H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
    [Crossref]
  10. H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
    [Crossref] [PubMed]
  11. H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
    [Crossref] [PubMed]
  12. U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
    [Crossref]
  13. Y. Xie, A.R. Zakharian, J.V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106 (2004).
    [Crossref] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  15. H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
    [Crossref]
  16. F.J. García de Abajo and J.J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
    [Crossref]

2005 (3)

G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
[Crossref]

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

F.J. García de Abajo and J.J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[Crossref]

2004 (2)

Y. Xie, A.R. Zakharian, J.V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106 (2004).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

2003 (3)

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

2001 (1)

1999 (1)

T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
[Crossref]

1998 (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

1997 (2)

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

1992 (1)

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

’t Hooft, G.W.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

Alkemade, P.F.A.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Blok, H.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

Chang, C.H.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Degiron, A.

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Dubois, G.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

Ebbesen, T.W.

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Eliel, E.R.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

Finn, P.L.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

García de Abajo, F.J.

F.J. García de Abajo and J.J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[Crossref]

García-Vidal, F.J.

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Gbur, G.

G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
[Crossref]

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

Ghaemi, H.F.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Gyorgy, E.M.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Heitmann, D.

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

Kikukawa, T.

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

Kryder, M.H.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Kuzmin, N.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

Lenstra, D.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
[Crossref]

Lezec, H.J.

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Linke, R.A.

Mansuripur, M.

Martín-Moreno, L.

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Moloney, J.V.

Pellerin, K.M.

Phillips, R.T.

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

Pohlmann, K.C.

K.C. Pohlmann, The Compact Disc Handbook, 2nd ed. (Oxford University Press, Oxford, 1992).

Sáenz, J.J.

F.J. García de Abajo and J.J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[Crossref]

Schouten, H.F.

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Schröter, U.

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

Seider, S.

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

Takahashi, M.

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

Thio, T.

T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Tode, S.

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

Tominaga, J.

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

Trautman, J.K.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Visser, T.D.

G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
[Crossref]

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a subwavelength slit,” Opt. Express 11, 371 (2003).
[Crossref] [PubMed]

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

Wolfe, R.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

Wolff, P.A.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Xie, Y.

Zakharian, A.R.

App. Phys. Lett. (2)

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” App. Phys. Lett. 61, 142 (1992).
[Crossref]

G. Gbur, H.F. Schouten, and T.D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” App. Phys. Lett. 87, 191109 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

T.D. Visser, H. Blok, and D. Lenstra, “Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses,” IEEE J. Quantum Electron. 35, 240 (1999).
[Crossref]

J. Appl. Phys. (1)

J. Tominaga, T. Kikukawa, M. Takahashi, and R.T. Phillips, “Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction,” J. Appl. Phys. 82, 3214 (1997).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A: Pure Appl. Opt. 6, S277 (2004).
[Crossref]

Nature (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E (1)

H.F. Schouten, T.D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: Waveg-uiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[Crossref] [PubMed]

F.J. García de Abajo and J.J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[Crossref]

Ultramicroscopy (1)

U. Schröter, S. Seider, S. Tode, and D. Heitmann, “Surface plasmon reflection at edges and resonance effects in metal bars,” Ultramicroscopy 68, 223 (1997).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

K.C. Pohlmann, The Compact Disc Handbook, 2nd ed. (Oxford University Press, Oxford, 1992).

Supplementary Material (3)

» Media 1: AVI (496 KB)     
» Media 2: AVI (543 KB)     
» Media 3: AVI (349 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Illustration of the three readout system configurations studied, and the relevant parameters used to quantify them. Configurations 1 and 2 only differ in the position of the plasmon pits, while configuration 3 has a different slit width and only a single plasmon pit.

Fig. 2.
Fig. 2.

Normalized transmission through the metal plate for the different readout configurations. The red curve indicates the transmission for configurations 1 and 2, while the green curve indicates the transmission for configuration 3. The dashed lines indicate the transmission in the absence of the plasmon pits. The transmission is roughly a periodic function of γ.

Fig. 3.
Fig. 3.

Readout contrast for a single data pit, for various values of γ. The slit width is a = 25 nm, as used for configurations 1 and 2. The dashed line indicates the shape of the data pit.

Fig. 4.
Fig. 4.

Readout contrast for a single data pit, for larger values of γ. The slit width is a = 25 nm, as used for configurations 1 and 2. The dashed line indicates the shape of the data pit. The system now responds more to the edges of the data structure, rather than mapping the exact shape of the structure.

Fig. 5.
Fig. 5.

(496 KB) Movie showing the intensity of the electric field in the vicinity of the readout system for various positions of the data structure, for configuration 1.

Fig. 6.
Fig. 6.

Readout contrast for a single data pit, for even larger values of γ. The slit width is a = 25 nm, as used for configurations 1 and 2. The dashed line indicates the shape of the data pit. It can be seen that the readout contrast is again diminishing in this range.

Fig. 7.
Fig. 7.

(543 KB) Movie showing the intensity of the electric field in the vicinity of the readout system for various positions of the data structure, for configuration 2.

Fig. 8.
Fig. 8.

Readout contrast for a single data pit, for configuration 3, with a = 10 nm. A resonance in the response of the system can be seen when the data structure passes the location of the readout plasmon pit.

Fig. 9.
Fig. 9.

Readout contrast for a single data pit, for configuration 3, with a = 10 nm. The contrast of the system improves in comparison with the previous figure, but significant oscillations appear when the data pit is on the side of the slit without the plasmon pit.

Fig. 10.
Fig. 10.

(349 KB) Movie showing the intensity of the electric field in the vicinity of the readout system for various positions of the data structure, for configuration 3.

Fig. 11.
Fig. 11.

Readout contrast for 2 data pits for configuration 1. With the pits separated by 120 nm, their shapes can be clearly distinguished in the reflected power.

Fig. 12.
Fig. 12.

Readout contrast for 2 data pits for configuration 2. The four edges of the data structures can be clearly resolved in the reflected power, with the pits separated by 220 nm.

Fig. 13.
Fig. 13.

Readout contrast for 2 data pits for configuration 3. The two pits can be resolved and are separated by 120 nm, though the contrast is not as good as for configuration 2.

Fig. 14.
Fig. 14.

Dependence of configuration 3 on the width of the slit. For even a 5 nm variation of slit width, the readout contrast is significantly reduced and the system oscillations dramatically increased.

Fig. 15.
Fig. 15.

Dependence of configuration 1 on the symmetry of the plasmon pits. It can be seen that a 10 nm variation in the position of one of the pits does not significantly affect the system performance.

Fig. 16.
Fig. 16.

Dependence of configuration 2 on the symmetry of the plasmon pits. The readout contrast is greatly affected by an asymmetry in the pit position of 10 nm, though readout is still possible.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

contrast P data P no data P no data .
E i x z = E i ( inc ) x z D Δ ε x ' z ' G ij E ( x , z ; x ' , z ' ) E j x ' z ' dx ' dz '
T slit S z dx + plate ( S z S z inc ) dx slit S z ( 0 ) dx

Metrics