Abstract

The use of polarized light as an approach to further control the extraordinary transmission (EOT) through nanostructured metallic films has recently gained attention. In this work, it is shown that aperture shape and orientation not only determine the intensity of the polarized light emitted, corroborating the previous work of others, but also can be used to spectrally tune the relative peak intensity of surface plasmon polaritons modes. The high extinction ratio of high aspect ratio apertures lends itself to the creation of micron-sized structures that emit at different wavelengths depending upon the orientation of linearly polarized incident light. This has many potential applications including the prospect of color shifting pixels for high definition television (HDTV) and thin film electroluminescent (TFEL) devices as well as novel polarization mode dispersion control components.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66,163 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
    [CrossRef]
  3. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  5. V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland Publishing, New York, 1982).
  6. J. W. Strutt(Lord Rayleigh), "On the Dynamical Theory of Grating," Proc. Royal Soc. London A 79,399 (1907).
    [CrossRef]
  7. M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
    [CrossRef]
  8. R. W. Wood, "Anomalous Diffraction Gratings," Phys. Rev. 48,928 (1935).
    [CrossRef]
  9. H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
    [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
    [CrossRef] [PubMed]
  11. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Gripp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256 (1999).
    [CrossRef]
  12. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12,3629 (2004).
    [CrossRef] [PubMed]
  13. C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
    [CrossRef]
  14. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
    [CrossRef] [PubMed]
  15. E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
    [CrossRef]
  16. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
    [CrossRef] [PubMed]
  17. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
    [CrossRef]

2004 (3)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12,3629 (2004).
[CrossRef] [PubMed]

2003 (2)

E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
[CrossRef]

M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

2000 (1)

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

1999 (2)

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Gripp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256 (1999).
[CrossRef]

1998 (2)

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

1944 (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66,163 (1944).
[CrossRef]

1935 (1)

R. W. Wood, "Anomalous Diffraction Gratings," Phys. Rev. 48,928 (1935).
[CrossRef]

1907 (1)

J. W. Strutt(Lord Rayleigh), "On the Dynamical Theory of Grating," Proc. Royal Soc. London A 79,399 (1907).
[CrossRef]

Altewisher, E.

E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66,163 (1944).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

Duch, A. C.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Gripp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

Feldmann, J.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Gripp, D. E.

Grupp, D.E.

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Kim, T. J.

Koch, M.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Lavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12,3629 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Gripp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

Sarrazin, M.

M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
[CrossRef]

Sönnichesen, C.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Steininger, G.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Strutt, J. W.

J. W. Strutt(Lord Rayleigh), "On the Dynamical Theory of Grating," Proc. Royal Soc. London A 79,399 (1907).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12,3629 (2004).
[CrossRef] [PubMed]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Gripp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

van Exter, M. P.

E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
[CrossRef]

Vigneron, J-P

M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
[CrossRef]

Vigoureux, J-M

M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
[CrossRef]

von Plessen, G.

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

Woerdman, J. P.

E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
[CrossRef]

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, "Anomalous Diffraction Gratings," Phys. Rev. 48,928 (1935).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

C. Sönnichesen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons in nanoholes in metal films," Appl. Phys. Lett. 76,140 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

E. Altewisher, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. A 20,1927 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16,1734 (1999).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391667 (1998).
[CrossRef]

Opt. Comm. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239,61 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (2)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66,163 (1944).
[CrossRef]

R. W. Wood, "Anomalous Diffraction Gratings," Phys. Rev. 48,928 (1935).
[CrossRef]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D.E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58,6779 (1998).
[CrossRef]

M. Sarrazin, J-P Vigneron, and J-M Vigoureux, Phys. Rev. B 67,085415 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Lavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92,037401 (2004).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Phys. Rev. Lett. 77,1889 (1996).
[CrossRef] [PubMed]

Proc. Royal Soc. London A (1)

J. W. Strutt(Lord Rayleigh), "On the Dynamical Theory of Grating," Proc. Royal Soc. London A 79,399 (1907).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297,820 (2002).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland Publishing, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrographs of polarizing films with aspect ratios of 2.4 with (a) apertures aligned perpendicular to the square array and (b) apertures rotated 45° with respect to the square array. (c) The normalized transmission of films 1a (closed triangles) and 1b (open squares) are plotted against the angle of incident polarization. Solid and dashed lines are cos2ϕ curves drawn as a guide to the eye and to compare the experimental results with Malus’ Law.

Fig. 2.
Fig. 2.

A color-switching array composed of two primary arrays, ao equal to 375nm in the x-and 500 nm in the y- direction.

Fig. 3.
Fig. 3.

Transmission spectra for primary (solid lines) and color-switching arrays (dashed lines). Color-switching films composed of primary arrays with ao equal to 375 and 500 nm.

Fig. 4.
Fig. 4.

Plot of a color-switching film with ao equal to 375 nm in the x- and 500 nm in the y-direction where white and black corresponds to transmission maxima and minima, respectively. A transmission optical micrograph of the 32 by 32µm structure is inset for both polarizations.

Metrics