Abstract

Defect radiation has been always considered as the most important loss for an emitter based on band gap emission. Here, we propose a novel approach which goes against this conventional wisdom. Based on the resonance effect between the surface plasmon of metal nanoparticles and defect emission, it is possible to convert the useless defect radiation to the useful excitonic emission with a giant enhancement factor. Through the transfer of the energetic electrons excited by surface plasmon from metal nanoparticles to the conduction band of the emitter, the band gap emission can be greatly enhanced, while the defect emission can be suppressed to noise level.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Next-generation lighting initiative. http:// lighting.sandia.gov.
  2. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
    [CrossRef] [PubMed]
  3. H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998).
    [CrossRef] [PubMed]
  4. W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
    [CrossRef]
  5. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
    [CrossRef]
  6. N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
    [CrossRef]
  7. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
    [CrossRef]
  8. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
    [CrossRef]
  9. C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
    [CrossRef]
  10. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
    [CrossRef]
  11. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
    [CrossRef] [PubMed]
  12. K. T. Tsen, Ultrafast physical process in semiconductors, (Academic Press, New York, 2001), 109.
    [CrossRef]
  13. V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998).
    [CrossRef]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  15. S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005).
    [CrossRef]
  16. P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997).
    [CrossRef]
  17. P. V. Kamat, ‘‘Photoinduced transformations in semiconductor-metal nanocomposite Assemblies,’’Pure Appl. Chem. 74, 1693-1706 (2002).
    [CrossRef]
  18. A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

2005 (3)

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005).
[CrossRef]

A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

2004 (1)

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

2003 (2)

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (3)

P. V. Kamat, ‘‘Photoinduced transformations in semiconductor-metal nanocomposite Assemblies,’’Pure Appl. Chem. 74, 1693-1706 (2002).
[CrossRef]

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

2001 (1)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

2000 (1)

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

1998 (2)

V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998).
[CrossRef]

H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998).
[CrossRef] [PubMed]

1997 (2)

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997).
[CrossRef]

1996 (1)

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Chen, H. P.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Chen, S. Y.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Chen, Y. F.

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Choi, H. J.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Fan, S.

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

Feick, H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Giersig, M.

A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

Gnade, B. E.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Goldberger, J.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Haller, E. E.

H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998).
[CrossRef] [PubMed]

Han, W.

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

Haneda, H.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

He, R.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Hsu, N. E.

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Hu, Y.

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

Huang, M. H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Hung, W. K.

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Ishigaki, T.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

Kamat, P. V.

P. V. Kamat, ‘‘Photoinduced transformations in semiconductor-metal nanocomposite Assemblies,’’Pure Appl. Chem. 74, 1693-1706 (2002).
[CrossRef]

P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997).
[CrossRef]

Klimov, V. I.

V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998).
[CrossRef]

Lee, S.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Li, Q.

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

Liao, H. C.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Lin, C. C.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005).
[CrossRef]

Mcbranch, D. W.

V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998).
[CrossRef]

Meijerink, A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

Meulenkamp, E. A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

Mulvaney, P.

A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

Ohashi, N.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

Okada, N.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

Queisser, H. J.

H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998).
[CrossRef] [PubMed]

Sakaguchi, I.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

Seager, C. H.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Sekiguchi, T.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

Shanghavi, B.

P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Tallant, D. R.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Tran, N.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

van Dijken, A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

Vanheusden, K.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Vanmaekelbergh, D.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

Voigt, J. A.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Warren, W. L.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Weber, E.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Wood, A.

A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

Wu, Y.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Yan, H.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Yang, P.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Zhang, Y.

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002).
[CrossRef]

J. Appl. Phys. (3)

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005).
[CrossRef]

J. Lumin. (1)

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000).
[CrossRef]

J. Phys. Chem (1)

A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003).
[CrossRef] [PubMed]

Phys. Chem. B (1)

P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997).
[CrossRef]

Phys. Rev, Lett. (1)

V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002).
[CrossRef] [PubMed]

Pure Appl. Chem. (1)

P. V. Kamat, ‘‘Photoinduced transformations in semiconductor-metal nanocomposite Assemblies,’’Pure Appl. Chem. 74, 1693-1706 (2002).
[CrossRef]

Science (2)

H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998).
[CrossRef] [PubMed]

W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997).
[CrossRef]

Other (2)

Next-generation lighting initiative. http:// lighting.sandia.gov.

K. T. Tsen, Ultrafast physical process in semiconductors, (Academic Press, New York, 2001), 109.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron microscopy images of (a) top-viewed, (b) tilt angle of 20° ZnO nanorods grown on sapphire, (c) ZnO nanorods with the coverage of gold nanoparticles deposited by a current of 20 mA for 35 s, and (d) ZnO nanorods.

Fig. 2.
Fig. 2.

Photoluminescence spectra of ZnO nanorods with and without Au coating. The coverage of Au particles was deposited by a current of 20 mA for 20 s. The inset shows the absorption spectrum of a typical surface plasmon extinction spectrum of Au nanoparticles.

Fig. 3.
Fig. 3.

(a) Coating time dependence of relative intensity ratio of excitonic and defect emission. The square (∎) denotes the ratio of integrated intensity of excitonic emission of ZnO nanorods with gold coating (IAu) to that of non-coated sample (I0). The triangle (⊴) denotes the intensity ratio of defect emission with Au coating to that of non-coating defect emission. (b) Coating time dependence of relative integrated intensity ratio of (a) (IAu/I0): excitonic emission, (c) (Id/I0): defect emission of ZnO nanorods with four different electron acceleration voltages.

Fig. 4.
Fig. 4.

Schematics of the effect of surface plasmon resonance on suppression and enhancement of defect and excitonic emissions, respectively.

Fig. 5.
Fig. 5.

Photoluminescence spectra of ZnO na norods with Au coating (20 mA, 60 s) and without Au coating.

Fig. 6. (a)
Fig. 6. (a)

Photoluminescence spectra of GaN nanowires with Au coating (20 mA, 60 s) and without Au coating. The Au coating was performed by a current of 20 mA for 60 s, (b) Photoluminescence spectra of GaN nanowires with (the square ∎) and without Au nano-ellipsoids (the circle ○). The spectra are normalized to their defect emission intensities. The inset is the absorbance spectrum of gold ellipsoid solution.

Metrics