Abstract

We have fabricated, characterized and theoretically analyzed the performance of bilayer (or stacked) metallic wire-grids. The samples with 100 nm period were fabricated with extreme-ultraviolet interference lithography. Transmission efficiency over 50% and extinction ratios higher than 40 dB were measured in the visible range with these devices. Simulations using a finite-difference time-domain algorithm are in agreement with the experimental results and show that the transmission spectra are governed by Fabry-Perot interference and near-field coupling between the two layers of the structure. The simple fabrication method involves only a single lithographic step without any etching and guarantees precise alignment and separation of the two wire-grids with respect to each other.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, page 333.
  2. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
    [CrossRef]
  3. S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
    [CrossRef]
  4. G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
    [CrossRef]
  5. J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
    [CrossRef] [PubMed]
  6. H. Tamada, T. Doumiki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419 (1997).
    [CrossRef] [PubMed]
  7. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366 (2005).
    [CrossRef] [PubMed]
  8. B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
    [CrossRef]
  9. T. Doumuki, H. Tamada, "An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode," Appl. Phys. Lett. 71, 686 (1997).
    [CrossRef]
  10. J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
    [CrossRef]
  11. L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434 (2005).
    [CrossRef] [PubMed]
  12. L. L. Soares and L. Cescato, "Metallized photoresist grating as a polarizing beam splitters," Appl. Opt. 40, 5906 (2001).
    [CrossRef]
  13. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, " Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303 (2005).
    [CrossRef] [PubMed]
  14. B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30,2360 (2005).
    [CrossRef] [PubMed]
  15. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
    [CrossRef]
  16. D. Y. Smith, "Optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  17. Peng Liu, EM  Explorer, http://www.emexplorer.net.
  18. A. Taflove, S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition, Artech House, 2005.
  19. J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, Inc., 1975).
  20. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  21. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485 (2005).
    [CrossRef] [PubMed]
  22. T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
    [CrossRef]

2005

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
[CrossRef] [PubMed]

D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366 (2005).
[CrossRef] [PubMed]

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434 (2005).
[CrossRef] [PubMed]

M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, " Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303 (2005).
[CrossRef] [PubMed]

B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30,2360 (2005).
[CrossRef] [PubMed]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485 (2005).
[CrossRef] [PubMed]

2003

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

2001

2000

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

1997

1996

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

1981

G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
[CrossRef]

Ahn, S-W.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Bai, B.

Ballantyne, J. M.

G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
[CrossRef]

Carter, J. L.

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Cescato, L.

Chen, L.

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Cornelissen, H. J.

David, C.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

de Boer, D. K. G.

Deng, J.

J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
[CrossRef] [PubMed]

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Deng, X.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Deng, Z.

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Doumiki, T.

Doumuki, T.

T. Doumuki, H. Tamada, "An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode," Appl. Phys. Lett. 71, 686 (1997).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Graham, A.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Kim, D.

Kim, J-S.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Kim, S. H.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Kley, E-B.

B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Lee, K-D.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Lee, S-H.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Li, L.

Liu, F.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
[CrossRef] [PubMed]

Liu, W.

Mansuripur, M.

Matsumoto, S.

Moloney, J. V.

Nealey, P.F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Nikolov, A.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Park, J-D.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Savas, T. A.

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

Schattenburg, M. L.

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

Schnabel, B.

B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Sciortino, P.

J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
[CrossRef] [PubMed]

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Smith, H. I.

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

Soares, L. L.

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Sonek, G. J.

G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
[CrossRef]

Tamada, H.

Urbach, H. P.

Varghese, R.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Wagner, D. K.

G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
[CrossRef]

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Wang, J. J.

J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005).
[CrossRef] [PubMed]

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Wyrowski, F.

B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Xie, Y.

Xu, M.

Yamaguchi, T.

Yoon, P-W.

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Zakharian, A. R.

Zeng, L.

Zhang, W.

Zhou, L.

App. Phys. Lett.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Doumuki, H. Tamada, "An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode," Appl. Phys. Lett. 71, 686 (1997).
[CrossRef]

IEEE Photonics Technol. Lett.

J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996).
[CrossRef]

J. Vac. Sci. Techol.

G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981).
[CrossRef]

Microelectron. Eng.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Nanotechnology

S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005).
[CrossRef]

Opt. Eng.

B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Other

E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, page 333.

D. Y. Smith, "Optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

Peng Liu, EM  Explorer, http://www.emexplorer.net.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition, Artech House, 2005.

J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, Inc., 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of a bilayer wire-grid with period p, photoresist height h, photoresist width a, and metal thickness t. Separation between the layers is defined by the thickness of the metal and photoresist layers, d = h-t. Photoresist duty cycle is f = a/p.

Fig. 2.
Fig. 2.

Cross-sectional (a) and top-down (b) scanning electron microscope images of a subwavelength aluminum bilayer wire-grid. For this sample, a slight asymmetry of wire-grid can be seen resulting from the misalignment of the evaporation angle.

Fig. 3.
Fig. 3.

Measured transmission spectra and extinction ratio of an Al bilayer wire-grid with p=100 nm, h=94 nm, t=60 nm, and f=0.36.

Fig. 4.
Fig. 4.

The profiles of the of the electromagnetic field amplitudes (|E| and |H|) at λ=300 nm passing through an Al bilayer wire-grid with p=100 nm, h=94 nm, t=60 nm, f=0.36. The geometry of the simulation cell is shown in the right-most column. The refractive indices of aluminum, quartz, and PMMA are taken as n=0.276+3.61i, n=1.46 and n=1.48, respectively. The amplitudes are plotted with linear scale where the minima are set to zero and the maxima are set to maximum amplitudes of the individual field components.

Fig. 5.
Fig. 5.

Calculated transmission spectra and extinction ratio of an Al bilayer grating with p=100 nm, h=94 nm, t=60 nm, f=0.36. (a)The schematic diagrams of the cross-section models used in the calculations. The comparison of the TM transmission (b), TE transmission (c), and extinction ratio (d) for the two cross-section models and experiment.

Fig. 6.
Fig. 6.

Calculated transmission spectra and extinction ratio of an Al bilayer grating as a function of separation between the layers at the incident wavelengths of (a) λ=700 nm and (b) λ=300 nm. d=h-t, p=100 nm, t=90 nm, f=0.5. In this calculation the photoresist and the quartz substrate are omitted. The scattered data points are the results of the simulations of a bilayer wire-grid whereas solid lines are calculated by using Eq. (2) and the values listed in Table 1. In the insets TE transmission spectra are plotted with higher magnification.

Fig. 7.
Fig. 7.

Calculated transmission spectra and extinction ratio of the Al bilayer grating as a function of the lateral shift between the layers at the incident wavelengths of (a) λ=700 nm and (b) λ=300 nm. The definition of lateral shift is visualized in the inset. Note that Δx/p=0.5 corresponds to a bilayer grating as depicted in Fig.1. p =100 nm, t =90 nm, f=0.5.

Tables (2)

Tables Icon

Table 1. The calculated transmittance (T0 ), reflectance (R0 ) and phase change upon reflectance (φ) of a single layer Al wire-grid at wavelengths of 700 and 300 nm for TM and TE polarization. p=100 nm, t =90 nm, f=0.5.

Tables Icon

Table 2. The comparison of the calculated performances of the single layer, bilayer and two Al wire-grids used in tandem. p=100 nm, t=90 nm, f=0.5. For the bilayer wire-grid the separation is d=20nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = E t 2 E i 2 n q ,
T = T 0 2 1 + R 0 2 2 R 0 cos [ δ ] ,
δ = m 4 π d λ + 2 φ .

Metrics