Abstract

In this work, we present for the first time a new and realistic application of the “perfect lens”, namely, electromagnetic traps (or tweezers). We combined two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers, and experimentally demonstrated the very unique advantages of using 3DNRFLs for electromagnetic traps. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens. Electromagnetic trapping was demonstrated using polystyrene particles in suspension, and subsequent to being trapped to a single point, they were then accurately manipulated over a large distance by simple movement of a 3DNRFL-imaged microwave monopole source.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968).
    [CrossRef]
  2. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
    [CrossRef] [PubMed]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
    [CrossRef]
  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  5. R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  6. J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
    [CrossRef] [PubMed]
  9. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
    [CrossRef] [PubMed]
  10. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
    [CrossRef] [PubMed]
  11. Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
    [CrossRef] [PubMed]
  12. A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978).
    [CrossRef]
  13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  14. E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
    [CrossRef]
  15. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  16. A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971).
    [CrossRef]
  17. R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
    [CrossRef] [PubMed]
  18. K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
    [CrossRef]
  19. A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987).
    [CrossRef] [PubMed]
  20. A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
    [CrossRef]
  21. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
    [CrossRef]
  22. S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
    [CrossRef] [PubMed]
  23. S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
    [CrossRef] [PubMed]
  24. C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
    [CrossRef]
  25. J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973).
    [CrossRef]
  26. See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180-182, Prentice Hall, New Jersey (1989).
  27. Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  28. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
    [CrossRef]
  29. S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
    [CrossRef]
  30. P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
    [CrossRef]

2005

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

2004

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

2003

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

2002

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

2001

R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000

J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

1999

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

1998

E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

1996

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

1990

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

1987

A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
[CrossRef]

1986

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

1985

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

1978

A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

1973

J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973).
[CrossRef]

1971

A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1968

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968).
[CrossRef]

Asakura, T.

Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
[CrossRef]

A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

Berns, M.W.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

Bjorkholm, J.E.

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

Block, S.M.

K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

Brjorkholm, J.E.

Cable, A.

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

Chu, S.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

Denning, R.G.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

Dufresne, E.R.

E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Dziedzic, J.M.

A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
[CrossRef]

A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

Finer, J.T.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

Gordon, J.P.

J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973).
[CrossRef]

Grier, D.G.

E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Gross, S.P.

K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

Harada, Y.

Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Harrison, M.T.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

Holberg, L.

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

Holden, A.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

Joannopoulos, J.D.

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

Johson, S.G.

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

Lu, W.T.

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

Lu, Z.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

Luo, C.

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

Miao, B.

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Murakowski, J.

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Murakowski, J.A.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Nemat-Nasser, S.C.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

Padilla, W.J.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Parimi, P.V.

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

Pendry, J.B.

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

Prather, D.W.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Robbins, D.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

Schneider, G.J.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Schuetz, C.A.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

Schultz, S.

R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Sharp, D.N.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

Shelby, R.A.

R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shi, S.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Simmons, R.M.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

Smith, D.R.

R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Sonek, G.J.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

Soukoulis, C.M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

Spudich, J.A.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

Sridhar, S.

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

Stewart, W.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

Tadir, Y.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

Turberfield, A.J.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

Venkataraman, S.

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Veselago, V.G.

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968).
[CrossRef]

Vier, D.C.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

Vodo, P.

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

Wright, W.H.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

Yamane, T.

A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
[CrossRef]

Yao, P.

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Youngs, I.

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971).
[CrossRef]

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004).
[CrossRef]

Biophys. J.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

IEEE Journal of Quantum Electronics

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990).
[CrossRef]

IEEE Trans. Microw. Theory Techniques

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999).
[CrossRef]

Nature

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003).
[CrossRef] [PubMed]

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003).
[CrossRef] [PubMed]

Nature (London)

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef]

A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987).
[CrossRef]

Opt. Commun.

Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973).
[CrossRef]

Phys. Rev. B

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Phys. Rev. Lett.

J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005).
[CrossRef] [PubMed]

A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996).
[CrossRef] [PubMed]

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985).
[CrossRef] [PubMed]

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Rev. Sci. Instrum.

E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

Science

A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987).
[CrossRef] [PubMed]

R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968).
[CrossRef]

Other

See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180-182, Prentice Hall, New Jersey (1989).

Supplementary Material (4)

» Media 1: MPG (8945 KB)     
» Media 2: MPG (7211 KB)     
» Media 3: MPG (6157 KB)     
» Media 4: MPG (7139 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Three-dimensional PhC fabricated layer by layer (20 layers in total). The inset shows a conventional cubic unit cell of the bcc structure. (b) Band structure of the bcc lattice PhC.

Fig. 2.
Fig. 2.

Image of the optimized monopole source achieved through the 3D PhC flat lens at 39mm away from the source (the lens is 25mm thick). The outlined region shows the area of the image where the intensity was>0.5 max.

Fig. 3.
Fig. 3.

The schematic of the basic apparatus used for the microwave tweezers. The inset shows the polarization of the electric field with regard to the PhC.

Fig. 4.
Fig. 4.

(a,b) Microwave electromagnetic trapping of neutral particles through a negative-refraction flat lens [Media 1]. (c, d) Microwave electromagnetic dragging of neutral particles along the vertical axis [Media 2]. Based on the result shown in Fig. 4(a,b), the monopole source has moved 10mm along the vertical axis. (e,f) Microwave electromagnetic dragging of neutral particles along the horizontal axis. Based on the result shown in Fig. 4(c,d), the monopole source has moved 6mm along the horizontal axis [Media 3].

Fig. 5.
Fig. 5.

Microwave electromagnetic trapping of neutral particles with different sizes. The average diameter of the large particles and that of the small particles are 100μm and 600μm, respectively. Two circles are used to track the motion of particles. [Media 4]

Metrics