Abstract

This paper demonstrates, for the first time to our best knowledge, the application of a tunable external-cavity fiber Bragg grating diode laser in spectroscopic chemical sensing. A tunable fiber Bragg grating external-cavity semiconductor laser is demonstrated with over 10 nm of tuning range. A piezoactuator was implemented to stretch the grating for rapid wavelength tuning of the laser. The application of such low-cost tunable FBG lasers in spectroscopic chemical sensing was demonstrated in acetylene gas with a wavelength modulation spectroscopy technique.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richter, D. G. Lancaster, and F. K. Tittel, " Development of an automated diode-laser-based multi-component gas sensor," Appl. Opt. 39,4444-4450 (2000).
    [CrossRef]
  2. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, "Measurements of CO, CO2, OH, and H2O in room temperature and combustion gases by use of a broadly current-tuned multi-section InGaAsP diode laser," Appl. Opt. 38,1506-1512 (1999).
    [CrossRef]
  3. C. Chang-Hasnain, "Tunable VCSELS," IEEE J. Sel. Top. Quantum Electron. 6, 978-987, Nov./Dec. 2000.
    [CrossRef]
  4. H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
    [CrossRef]
  5. J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
    [CrossRef]
  6. J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
    [CrossRef]
  7. H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
    [CrossRef]
  8. A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
    [CrossRef]
  9. C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
    [CrossRef]
  10. D. S. Starodubov, V. Grubsky, J. Feinberg, B. Kobrin, and S. Juma "Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes," Opt. Lett. 22, 1086-1088 (1997).
    [CrossRef] [PubMed]
  11. V. Grubsky, D. S. Starodubov, and J. Feinberg, "Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4-5.4-eV ultraviolet light," Opt. Lett. 24, 729-731 (1999).
    [CrossRef]
  12. T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
    [CrossRef]
  13. T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
    [CrossRef]

2004 (1)

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

2003 (3)

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

2002 (1)

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

2001 (1)

T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

2000 (2)

1999 (3)

1997 (2)

D. S. Starodubov, V. Grubsky, J. Feinberg, B. Kobrin, and S. Juma "Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes," Opt. Lett. 22, 1086-1088 (1997).
[CrossRef] [PubMed]

T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
[CrossRef]

Accard, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Allen, M. G.

Bergonzo, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Bissessur, H.

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

Butler, S.A.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Caraglia, C.

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, "Tunable VCSELS," IEEE J. Sel. Top. Quantum Electron. 6, 978-987, Nov./Dec. 2000.
[CrossRef]

De Gaudemaris, D.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Durand, O.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Feinberg, J.

Fillion, T.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Goh, C.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Grubsky, V.

Hashimoto, J. -I.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Hashimoto, J.-I

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Ibsen, M.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Inui, T.

T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Iwashima, T.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Jacquet, J.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Juma, S.

Kato, T.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Katsuyama, T.

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Kikuchi, K.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Kobrin, B.

Komukai, T.

T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
[CrossRef]

Krol, H.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Lancaster, D. G.

Landreau, J.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Mascher, P.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Mokhtar, M.R.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Murashima, K.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Nakanishi, H.

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Nakazawa, M.

T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
[CrossRef]

Peng, Z. L.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Plais, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Rainsant, J.-M.

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

Riant, I.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

Richter, D.

Sasaki, G.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Set, S.

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

Shigehara, M.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Shiozaki, M.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Sillard, H.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Sonnenfroh, D. M.

Starodubov, D. S.

Takagi, T.

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Tamura, K.

T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
[CrossRef]

Thedrez, B.

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

Tittel, F. K.

Upschulte, B. L.

Vuong, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

Wang, Y.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Wojcik, J.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Xu, C. Q.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Yamabayashi, N.

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Yamaguchi, A.

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Yoshida, K.

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

Yu, H. G.

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chang-Hasnain, "Tunable VCSELS," IEEE J. Sel. Top. Quantum Electron. 6, 978-987, Nov./Dec. 2000.
[CrossRef]

IEEE Photon. Technol. Lett. (5)

H. Bissessur, C. Caraglia, B. Thedrez, J.-M. Rainsant, and I. Riant, "Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks," IEEE Photon. Technol. Lett. 11, 1304-1306 (1999).
[CrossRef]

J.-I Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi, "Eight-Channel Wavelength Multiplexing With 200-GHz Spacing Using Uncooled Coaxial Fiber Bragg Grating External-Cavity Semiconductor Laser Module," IEEE Photon. Technol. Lett. 14, (2002).
[CrossRef]

H. G. Yu, C. Q. Xu, Y. Wang, J. Wojcik, Z. L. Peng, and P. Mascher "External-Cavity Semiconductor Laser With Bragg Grating in Multimode Fiber" IEEE Photon. Technol. Lett. 16, (2004).
[CrossRef]

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Riant, "Widely Vernier Tunable External Cavity Laser Including a Sampled Fiber Bragg Grating With Digital Wavelength Selection," IEEE Photon. Technol. Lett. 15, (2003).
[CrossRef]

C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, "Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package," IEEE Photon. Technol. Lett. 15, (2003)
[CrossRef]

IEEE Photonics Technol.Lett. (1)

T. Komukai, K. Tamura, and M. Nakazawa, "An Efficient 0.04-nm Apodized Fiber Bragg Grating and Its Application to Narrow-Band Spectral Filtering," IEEE Photonics Technol.Lett. 9, 934-936 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. -I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, "Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission," J. Lightwave Technol. 21, (2003).
[CrossRef]

Opt. Commun. (1)

T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Tunable laser output power as a function of the injection current Mechanical tuning of the laser with changes in length of the FBG is shown in the inset

Fig. 2.
Fig. 2.

FBG laser wavelength tuning as a function of piezo-electric input voltage. The optical spectra of the FBG laser with 0 and 75V actuation voltages are shown in the inset of the figure.

Fig. 3.
Fig. 3.

Acetylene absorption at 1530.9 and 1531.5 nm as a function of the acetylene pressure. Inset: the near IR acetylene absorption spectrum from 1530-1537.5nm. The spectrum was taken at 20 Torr.

Fig. 4.
Fig. 4.

Acetylene gas sensing using the tunable FBG laser. The piezo-actuation voltage, detected photodetector voltage, and bandpass (BP)-filtered second harmonic output are shown.

Fig. 5.
Fig. 5.

Acetylene absorption at 1530.9nm varying linearly with pressure is shown. The recovered second harmonic signal amplitude was measured..

Metrics