Abstract

We present a single mode, single polarization, distributed feedback polymer dye laser, based on a short high order Bragg grating defined in a dye doped polymer layer between two secondary polymer layers. The Bragg grating is defined solely with standard I-line UV lithography. In this device we obtain single mode operation in a multimode structure by means of mode loss differentiation without using sub-wavelength structures. The laser is fabricated using micro-fabrication technology, is pumped by a pulsed frequency doubled Nd:YAG laser, and emits light in the chip plane at 551.39 nm, with a FWHM linewidth below 150 pm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," Proceedings of the IEEE Sensors 2002, 229-232 (2002)
    [CrossRef]
  2. E. Verpoorte and N. F. De Rooij, "Microfluidics meets MEMS," Proceedings of the IEEE 91930-953 (2003)
    [CrossRef]
  3. E. Verpoorte E, "Chip visionoptics for microchips," Lab on a Chip 342N-52N (2003)
  4. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, and A. Kristensen "Lab-on-a-chip with integrated optical transducers," Lab on a Chip, accepted for publication (2005)
  5. B. H. Soffer and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett. 10, 266267 (1967)
    [CrossRef]
  6. O. G. Peterson and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett. 12, 238240 (1967)
  7. H. Kogelnik and C. Shank, Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971)
  8. S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
    [CrossRef]
  9. C. Hu and S. Kim, "Thin-film dye laser with etched cavity," Appl. Phys. Lett. 29, 582-585 (1976)
    [CrossRef]
  10. Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)
  11. Y. Oki, T. Yoshiura, Y. Chisaki, M. Maeda, " Lasers and Laser Optics - Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide," Appl. Opt. 41, 5030-5035,(2002)
    [CrossRef] [PubMed]
  12. D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
    [CrossRef]
  13. D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
    [CrossRef]
  14. D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Microfabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005)
    [CrossRef] [PubMed]
  15. M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
    [CrossRef]
  16. J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
    [CrossRef]
  17. S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351, (2005)
    [CrossRef] [PubMed]
  18. S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
    [CrossRef]
  19. R. G. Hunsperger, "Integrated Optics: Theory and Technology," Fifth edition, Springer series in optical sciences, Springer-Verlag, Heidelberg (2002)
  20. S. L. McCall and P. M. Platzman, "An optimized π/2 distributed feedback laser," IEEE J. Quantum Electron. 21, 1899-1904 (1985)
    [CrossRef]
  21. K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
    [CrossRef]
  22. S. Balslev and F. Romanato, "Functionalized SU-8 patterned with X-ray Lithography," J. Vacuum Sci. Technol. B accepted for publication (2005)
    [CrossRef]
  23. B. B. Snavely, "Flashlamp-excited organic dye lasers," Proc. IEEE 57, 1374-1390 (1969)
    [CrossRef]
  24. M. A. Ali, J. Moghaddase, and S. A. Ahmed, "Optical properties of cooled rhodamine B in ethanol," J. Opt. Soc. Am. B 8, 1807-1810 (1991)
    [CrossRef]
  25. H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
    [CrossRef]

2005

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Microfabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005)
[CrossRef] [PubMed]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351, (2005)
[CrossRef] [PubMed]

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

2004

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
[CrossRef]

2003

E. Verpoorte and N. F. De Rooij, "Microfluidics meets MEMS," Proceedings of the IEEE 91930-953 (2003)
[CrossRef]

E. Verpoorte E, "Chip visionoptics for microchips," Lab on a Chip 342N-52N (2003)

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

2002

2001

Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)

1995

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

1992

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
[CrossRef]

1991

1985

S. L. McCall and P. M. Platzman, "An optimized π/2 distributed feedback laser," IEEE J. Quantum Electron. 21, 1899-1904 (1985)
[CrossRef]

1976

C. Hu and S. Kim, "Thin-film dye laser with etched cavity," Appl. Phys. Lett. 29, 582-585 (1976)
[CrossRef]

1971

H. Kogelnik and C. Shank, Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971)

1969

B. B. Snavely, "Flashlamp-excited organic dye lasers," Proc. IEEE 57, 1374-1390 (1969)
[CrossRef]

1967

B. H. Soffer and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett. 10, 266267 (1967)
[CrossRef]

O. G. Peterson and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett. 12, 238240 (1967)

Ahmed, S. A.

Ali, M. A.

Balslev, S.

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351, (2005)
[CrossRef] [PubMed]

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Microfabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005)
[CrossRef] [PubMed]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

Belotti, M.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

Chang, T. H. P.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Chen, Y.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

Chisaki, Y.

De Rooij, N. F.

E. Verpoorte and N. F. De Rooij, "Microfluidics meets MEMS," Proceedings of the IEEE 91930-953 (2003)
[CrossRef]

Galas, J.C.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Gersborg-Hansen, M.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

Gregersen, M. M.

Hane, K.

Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)

Hoekstra, H. J. W. M.

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
[CrossRef]

Hu, C.

C. Hu and S. Kim, "Thin-film dye laser with etched cavity," Appl. Phys. Lett. 29, 582-585 (1976)
[CrossRef]

Kanetkar, V. R.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

Kim, S.

C. Hu and S. Kim, "Thin-film dye laser with etched cavity," Appl. Phys. Lett. 29, 582-585 (1976)
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. Shank, Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971)

Kou, Q.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

Krijnen, G. J. M.

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
[CrossRef]

Kristensen, A.

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351, (2005)
[CrossRef] [PubMed]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Microfabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005)
[CrossRef] [PubMed]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
[CrossRef]

LaBianca, N.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Lading, L.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," Proceedings of the IEEE Sensors 2002, 229-232 (2002)
[CrossRef]

Lambeck, P. V.

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
[CrossRef]

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Li, Y.

Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)

Maeda, M.

McCall, S. L.

S. L. McCall and P. M. Platzman, "An optimized π/2 distributed feedback laser," IEEE J. Quantum Electron. 21, 1899-1904 (1985)
[CrossRef]

McFarland, B. B.

B. H. Soffer and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett. 10, 266267 (1967)
[CrossRef]

Moghaddase, J.

Mortensen, N. A.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

Muthuswamy, V.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

Nielsen, L. B.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," Proceedings of the IEEE Sensors 2002, 229-232 (2002)
[CrossRef]

Nielsen, T.

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
[CrossRef]

Nilsson, D.

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, "Microfabricated solid state dye lasers based on a photo-definable polymer," Appl. Opt. 44, 4965-4971 (2005)
[CrossRef] [PubMed]

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
[CrossRef]

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
[CrossRef]

Oki, Y.

Peterson, O. G.

O. G. Peterson and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett. 12, 238240 (1967)

Platzman, P. M.

S. L. McCall and P. M. Platzman, "An optimized π/2 distributed feedback laser," IEEE J. Quantum Electron. 21, 1899-1904 (1985)
[CrossRef]

Raja, K.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

Rasmussen, T.

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Sasaki, M.

Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)

Sevel, T.

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," Proceedings of the IEEE Sensors 2002, 229-232 (2002)
[CrossRef]

Shank, C.

H. Kogelnik and C. Shank, Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971)

Shaw, J. M.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Shi, P.

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

Singh, S.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

Snavely, B. B.

B. B. Snavely, "Flashlamp-excited organic dye lasers," Proc. IEEE 57, 1374-1390 (1969)
[CrossRef]

O. G. Peterson and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett. 12, 238240 (1967)

Soffer, B. H.

B. H. Soffer and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett. 10, 266267 (1967)
[CrossRef]

Sridhar, G.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

Torres, J.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

Verpoorte, E.

E. Verpoorte and N. F. De Rooij, "Microfluidics meets MEMS," Proceedings of the IEEE 91930-953 (2003)
[CrossRef]

Yoshiura, T.

Zolgharnain, S.

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 1-3 (2005)
[CrossRef]

C. Hu and S. Kim, "Thin-film dye laser with etched cavity," Appl. Phys. Lett. 29, 582-585 (1976)
[CrossRef]

B. H. Soffer and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett. 10, 266267 (1967)
[CrossRef]

O. G. Peterson and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett. 12, 238240 (1967)

H. Kogelnik and C. Shank, Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971)

IEEE J. Quantum Electron.

S. L. McCall and P. M. Platzman, "An optimized π/2 distributed feedback laser," IEEE J. Quantum Electron. 21, 1899-1904 (1985)
[CrossRef]

J. Lightwave Technol.

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "Efficient Interface Conditions for the Finite Difference Beam Propagation Method," J. Lightwave Technol. 10, 1352 -1355 (1992)
[CrossRef]

J. Luminescence

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, and K. Raja, "Solid-state polymeric dye lasers," J. Luminescence 101, 285291 (2003)
[CrossRef]

J. Micromech. Microeng.

Y. Li, M. Sasaki and K. Hane, "Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding," J. Micromech. Microeng. 11, 234-238, (2001)

J. Micromechanics Microeng.

S. Balslev, T. Rasmussen, P. Shi, and A. Kristensen, "Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist," J. Micromechanics Microeng. 15, 2456-2460 (2005)
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci Technol. B

K. Y. Lee, N. LaBianca, S. Zolgharnain, S. A. Rishton, J. D. Gelorme, J. M. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vac. Sci Technol. B 133012-3016 (1995)
[CrossRef]

Lab on a Chip

E. Verpoorte E, "Chip visionoptics for microchips," Lab on a Chip 342N-52N (2003)

Microelectron. Eng.

D. Nilsson, T. Nielsen, and A. Kristensen, "Molded plastic micro-cavity lasers," Microelectron. Eng. 73, 372-376 (2004)
[CrossRef]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen "A coupled cavity micro fluidic dye ring laser," Microelectron. Eng. 78-79, 185-189 (2005)
[CrossRef]

Opt. Express

Proc. IEEE

B. B. Snavely, "Flashlamp-excited organic dye lasers," Proc. IEEE 57, 1374-1390 (1969)
[CrossRef]

Proceedings of the IEEE

E. Verpoorte and N. F. De Rooij, "Microfluidics meets MEMS," Proceedings of the IEEE 91930-953 (2003)
[CrossRef]

Proceedings of the IEEE Sensors

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," Proceedings of the IEEE Sensors 2002, 229-232 (2002)
[CrossRef]

Rev. Sci. Instrum.

D. Nilsson, T. Nielsen, and A. Kristensen, "Solid State Micro-cavity Dye Lasers Fabricated by Nanoimprint Lithography," Rev. Sci. Instrum. 75, 4481-4486 (2004)
[CrossRef]

Other

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, and A. Kristensen "Lab-on-a-chip with integrated optical transducers," Lab on a Chip, accepted for publication (2005)

S. Balslev and F. Romanato, "Functionalized SU-8 patterned with X-ray Lithography," J. Vacuum Sci. Technol. B accepted for publication (2005)
[CrossRef]

R. G. Hunsperger, "Integrated Optics: Theory and Technology," Fifth edition, Springer series in optical sciences, Springer-Verlag, Heidelberg (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Photograph of a chip with a single mode polymer laser (grey rectangular area). (b) Schematic of a part of the laser in profile.

Fig. 2.
Fig. 2.

The calculated round trip loss spectrum of a laser at the laser threshold. The laser will operate in a single mode due to the increased mode distance and the limited dye gain profile.

Fig. 3.
Fig. 3.

(a) The refractive index matrix used in the beam propagation. The PMMA surface is shaped according to measurements on a real device. (b) The squared norm of the electric field of the zeroth transverse TE mode. The field is propagated through one period of the Bragg grating. (c) The squared norm of the electric field of the first transverse TE mode. The field is propagated through one period of the Bragg grating.

Fig. 4.
Fig. 4.

PMMA layer surface contour. The dashed curve shows the measurement data, the solid curve shows the measurement deconvoluted with respect to the profilometer needle radius of curvature of 5 μm.

Fig. 5.
Fig. 5.

Spectrum from laser device at a pump energy density of 250 μJ mm-2. The line width reflects the limited resolution of the spectrometer used for the measurement. Inset: The dye laser energy output as function of pump energy. The laser threshold lies at 220 μJ mm-2.

Fig. 6.
Fig. 6.

Spectra from two laser devices cut from a common wafer. The emission from the lasers is highly similar, indicating that the design is tolerant with respect to process variations.

Tables (1)

Tables Icon

Table 1. Calculated mode dependent coupling coefficients,|cm,n |2 , for the 2 modes in the SU-8 polymer slab waveguide. Equation 1 was used on the data from the beam propagation to find the coefficients.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| c m , n | 2 = | U m * ( y ) U n , p ( y ) d y | 2

Metrics