Abstract

In this paper, we report on various nanostructures produced through direct surface modification on metals using femtosecond laser pulses. We show, for the first time, that these nanosctructures are natural consequence following femtosecond laser ablation. The optimal conditions for producing various nanostructures are determined.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin 1995).
  2. D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
    [CrossRef]
  3. P. P. Rajeev, P. Ayyub, S. Bagchi, and G. R. Kumar, "Nanostructures, local fields, and enhanced absorption in intense light-matter interaction," Opt. Lett. 29, 2662-2664 (2004).
    [CrossRef] [PubMed]
  4. Nanostructured catalysts, S.L. Scott, C.M. Crudden, and C.W. Jones, eds. (Kluwer Academic, New York, 2003).
    [CrossRef]
  5. S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
    [CrossRef] [PubMed]
  6. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
    [CrossRef]
  7. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
    [CrossRef]
  8. S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, "Nanostructuring with spatially localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
    [CrossRef]
  9. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
    [CrossRef]
  10. I.V. Hertel, R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, "On the physics of material processing with femtosecond lasers," RIKEN Review No.32: Focused on Laser Precision Microfabrication (LPM2000), 23-30 (January, 2001).
  11. A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
    [CrossRef]
  12. A.Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
    [CrossRef]
  13. A.Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
    [CrossRef]

2005 (4)

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

A.Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A.Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

2004 (3)

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

P. P. Rajeev, P. Ayyub, S. Bagchi, and G. R. Kumar, "Nanostructures, local fields, and enhanced absorption in intense light-matter interaction," Opt. Lett. 29, 2662-2664 (2004).
[CrossRef] [PubMed]

2001 (1)

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

Amoruso, S.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Ausanio, G.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Ayyub, P.

Bagchi, S.

Bauer, T.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Bruzzese, R.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Chan, S.

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Chichkov, B.N.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, "Nanostructuring with spatially localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
[CrossRef]

Duscher, G.

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

Eliaz, N.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Eliezer, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Fallnich, C.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Fauchet, P.M.

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Fisher, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Frankel, M.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Geohegan, D.B.

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

Gouzman, I.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Grossman, E.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Guo, C.

A.Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A.Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

Henis, Z.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Horner, S.R.

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Horovitz, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Hunt, A.J.

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Joglekar, A.P.

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Koch, J.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Korte, F.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Kumar, G. R.

Lereah, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Liebermann, K.

Liu, H.

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Maman, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Meyhöfer, E.

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Miller, B.L.

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Mourou, G.

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Nolte, S.

Ostendorf, A.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Pennycook, S.J.

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

Puretzky, A.A.

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

Rajeev, P. P.

Shani, Y.

Terkel, H.

Vitello, M.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Vorobyev, A.Y.

A.Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A.Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

Wang, X.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

Welling, H.

Appl. Phys. A (1)

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Nanotexturing of gold films by femtosecond laser-induced melt dynamics," Appl. Phys. A 81, 325-328 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A.Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

D.B. Geohegan, A.A. Puretzky, G. Duscher, and S.J. Pennycook, "Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation," Appl. Phys. Lett. 72, 2987-2989 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Chan, S.R. Horner, P.M. Fauchet, and B.L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (3)

A.Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, and X. Wang, "Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum," Phys. Rev. B 71, 033406 (2005).
[CrossRef]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, Y. Horovitz, M. Frankel, S. Maman, and Y. Lereah, "Synthesis of nanoparticles with femtosecond laser pulses," Phys. Rev. B 69, 144119 (2004).
[CrossRef]

PNAS (1)

A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A.J. Hunt, "Optics at critical density: Applications to nanomorphing," PNAS,  101, 5856-5861 (2004).
[CrossRef]

Other (3)

Nanostructured catalysts, S.L. Scott, C.M. Crudden, and C.W. Jones, eds. (Kluwer Academic, New York, 2003).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin 1995).

I.V. Hertel, R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, "On the physics of material processing with femtosecond lasers," RIKEN Review No.32: Focused on Laser Precision Microfabrication (LPM2000), 23-30 (January, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM images of nanoscale structures in the center of the irradiated spot on copper following ablation at F = 0.35 J/cm2. (a) Sample surface before irradiation. [Note, this figure does not show the same spot on the sample as in (b)], (b) surface after one-shot ablation featuring random fine nanostructures in form of nanoprotrusions, nanocavities, and nanorims, (c) after two-shot ablation, (d) after 1000-shot ablation.

Fig. 2.
Fig. 2.

SEM images of the central part of the irradiated spot on copper following ablation at F = 1.52 J/cm2 (a) surface after 1 shot featuring only random nanostructures in the form of nanoprotrusions and nanocavities, (b) surface after 2 shot featuring only random nanostructures in the form of spherical nanoprotrusions and nanocavities, (c) surface after 10 shots featuring both nano- and micro-structures, (d) surface after 1000 shots showing microstructures being dominating.

Fig. 3.
Fig. 3.

SEM images of copper following two-shot ablation at F = 9.6 J/cm2. Only microstructures are present in the central area. However, nanostructures are observed on the periphery of the ablated spot. The insertion shows micro-structural details in the central area.

Fig. 4.
Fig. 4.

Different types of surface structures produced on copper at various combinations of laser fluence and number of shots.

Fig. 5.
Fig. 5.

(a) A typical image of sample surface before irradiation and (b) nascent nanostructures induced on copper by ablation at F = 0.35 J/cm2 and N = 1. Note, Fig. 5(a) does not show exactly the same spot on the sample as in Fig. 5(b).

Metrics