Abstract

We present a physical model describing the radiance acquired by an infrared sensor over a rugged heterogeneous surface. This model predicts the radiance seen over complex landscapes like urban areas and provides an accurate analysis of the signal, as each component is available at ground and sensor level. Plus, it allows data comparison from different instruments. Two representative cases (natural and urban) are analysed to show the composition and the construction of the sensor signal and to highlight the importance of having a 3D model, especially for rugged surfaces where environment weights in the overall spectral domain.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton and H. Tait, "AATSR: global-change and surface-temperature measurements from ENVISAT," ESA bulletin (ISSN 0376-4265) 105, 11-21 (2001).
  2. A. Monti Guarnieri, D. Daria, C. Cafforio, P. Guccione, P. Pasquali, D. Nüetsch, D. Small, E. Meier and Y. L. Desnos, "ENVISAT interferometry for mapping and monitoring: preliminary results," in Proceedings of the FRINGE 2003 workshop (ESA SP - 550), ESA /ESRIN, Italy, 1-5 December 2003.
  3. J. Okkonen, T. Hyvarinen and E. Herrala, "AISA Airborne Imaging Spectrometer-on its way from hyperspectral research to operative use," in International airborne remote sensing conference and exhibition - Development, integration, applications and operations, 3rd, Copenhagen, Denmark,1997; United States, July 7-10 1997, pp I-189- I-196.7
  4. ONERA, Timbre-Poste : http://www.onera.fr/visiononera/2005-02/faits-marquants.html#3.
  5. K. D. Bishop and M. J. Diestel, "Airborne remote earth sensing program: an operational airborne MWIR imaging spectrometer and applications," in Hyperspectral Remote Sensing and Applications, S. S. Shen, ed., Proc. SPIE 2821, 183-194 (1996).
    [CrossRef]
  6. J. A Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ. 86, 370-384 (2003).
    [CrossRef]
  7. V. Masson, G. Pigeon, P. Durand, L. Gomes, J. Salmond, J. P. Lagouarde, J. Voogt, T. R. Oke and C. Lac, "The canopy and aerosol particles interaction in Toulouse urban layer (CAPITOUL) experiment: first results," in Proceedings Fifth Symposium on the Urban Environment, AMS, 2004.
  8. J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
    [CrossRef]
  9. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew and S. M. Adler-Golden, "Modtran4," (1999).
  10. C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
    [CrossRef]
  11. P. Guillevic, "Modélisation des bilans radiatifs et énergétiques des couverts végétaux," M. S. thesis (P. Sabatier University, 1999).
  12. NASA/JHU, ASTER thermo-optical database, http://www.jpl.nasa.gov/.
  13. A. Malaplate, F. Nerry, M. P. Stoll, B. Guillame and X. Briottet, "Combined field [3-5µm] and [8-14µm] infrared imaging: approaches to extracting target’s bi-directional reflectivity and emissivity,".in 8st Inter. Symposium on remote sensing, SPIE-EOS-NASA-CNES, Sept. 17-21, Toulouse, France 2001.

2005

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

2004

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

2003

J. A Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ. 86, 370-384 (2003).
[CrossRef]

Achard, V.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Bonnefond, J. M.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Boucher, Y.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Briottet, X.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Irvine, M.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Lagouarde, J. P.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Lenot, X.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Miesch, C.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Moreau, P.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Oke, T. R.

J. A Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ. 86, 370-384 (2003).
[CrossRef]

Poutier, L.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Solliec, F.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Voogt, J. A

J. A Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ. 86, 370-384 (2003).
[CrossRef]

Voogt, J. A.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot and Y. Boucher, "Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. 43, 1552-1562 (2005).
[CrossRef]

Remote Sens. Environ.

J. A Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ. 86, 370-384 (2003).
[CrossRef]

Remote. Sens. Environ.

J. P. Lagouarde, P. Moreau, M. Irvine, J. M. Bonnefond, J. A. Voogt and F. Solliec, "Airborne experimental measurements of the angular variations in surface temperature over urban areas : case study of Marseille (France)," Remote. Sens. Environ. 93, 443-462 (2004).
[CrossRef]

Other

A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew and S. M. Adler-Golden, "Modtran4," (1999).

V. Masson, G. Pigeon, P. Durand, L. Gomes, J. Salmond, J. P. Lagouarde, J. Voogt, T. R. Oke and C. Lac, "The canopy and aerosol particles interaction in Toulouse urban layer (CAPITOUL) experiment: first results," in Proceedings Fifth Symposium on the Urban Environment, AMS, 2004.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton and H. Tait, "AATSR: global-change and surface-temperature measurements from ENVISAT," ESA bulletin (ISSN 0376-4265) 105, 11-21 (2001).

A. Monti Guarnieri, D. Daria, C. Cafforio, P. Guccione, P. Pasquali, D. Nüetsch, D. Small, E. Meier and Y. L. Desnos, "ENVISAT interferometry for mapping and monitoring: preliminary results," in Proceedings of the FRINGE 2003 workshop (ESA SP - 550), ESA /ESRIN, Italy, 1-5 December 2003.

J. Okkonen, T. Hyvarinen and E. Herrala, "AISA Airborne Imaging Spectrometer-on its way from hyperspectral research to operative use," in International airborne remote sensing conference and exhibition - Development, integration, applications and operations, 3rd, Copenhagen, Denmark,1997; United States, July 7-10 1997, pp I-189- I-196.7

ONERA, Timbre-Poste : http://www.onera.fr/visiononera/2005-02/faits-marquants.html#3.

K. D. Bishop and M. J. Diestel, "Airborne remote earth sensing program: an operational airborne MWIR imaging spectrometer and applications," in Hyperspectral Remote Sensing and Applications, S. S. Shen, ed., Proc. SPIE 2821, 183-194 (1996).
[CrossRef]

P. Guillevic, "Modélisation des bilans radiatifs et énergétiques des couverts végétaux," M. S. thesis (P. Sabatier University, 1999).

NASA/JHU, ASTER thermo-optical database, http://www.jpl.nasa.gov/.

A. Malaplate, F. Nerry, M. P. Stoll, B. Guillame and X. Briottet, "Combined field [3-5µm] and [8-14µm] infrared imaging: approaches to extracting target’s bi-directional reflectivity and emissivity,".in 8st Inter. Symposium on remote sensing, SPIE-EOS-NASA-CNES, Sept. 17-21, Toulouse, France 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Radiance seen by the sensor

Fig. 2.
Fig. 2.

Radiance contributors at BOA level

Fig. 3.
Fig. 3.

Sky viewing solid angle

Fig. 4.
Fig. 4.

Simulated cases

Fig. 5
Fig. 5

(a) sand reflectance (sand hill case) (b) street materials reflectances (urban case)

Fig. 6.
Fig. 6.

Sensor radiance for the sand cases (flat and hill)

Fig. 7.
Fig. 7.

Relative difference between flat and rugged surfaces (hill case)

Fig. 8.
Fig. 8.

Relative contribution of each sensor radiance component for the sand hill case

Fig. 9.
Fig. 9.

Relative contribution of each sensor radiance component for the sand flat case

Fig. 10.
Fig. 10.

Relative contribution of each BOA radiance component for the sand hill case

Fig. 11.
Fig. 11.

LBOA terms against facet location in the surface for the sand hill case at 3.9μ m

Fig. 12.
Fig. 12.

Sensor radiance for flat and urban surfaces

Fig. 13.
Fig. 13.

Relative difference between flat and rugged surfaces (street case)

Fig. 14.
Fig. 14.

Relative contribution of each sensor radiance component for the urban street case

Fig. 15.
Fig. 15.

Relative contribution of each sensor radiance component for the urban flat case

Fig. 16.
Fig. 16.

Relative contribution of each BOA radiance component for the urban street case

Fig. 17.
Fig. 17.

LBOA terms against facet location in the surface for the urban street case at 3.9μm

Tables (2)

Tables Icon

Table 1. Absolute measure uncertainty over a sand hill case using the flat hypothesis .

Tables Icon

Table 2. Absolute measure uncertainty over a street case using the flat hypothesis .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

L v = ∫∫ Ω IFOV [ L BOA ( P d ω ) . t Pd ω + L atm , ] d ω
L BOA ( P ) = L D ( P ) + L A ( P ) + L emis ( P ) + L env ( P )
L D ( P ) = E D ( P ) . ρ P dd ( u sun , u v ) π
E D ( P ) = E TOA . t ( u sun , P ) . n P . u sun .o ( P )
L A ( P ) = ∫∫ Ω sky L atm , ( u ; z P ) . n P . u . ρ P dd ( u , u v ) π .d ω + ∫∫ Ω sky L relief atm , ( u ; z P ) . n P . u . ρ P dd ( u , u v ) π .d ω
L emis ( P ) = ε P ( u v ) . L CN ( T P )
L env ( P ) = L D env ( P ) + L A evn ( P ) + L emis env ( P )
L D env ( P ) = ∫∫ V ( P ) ρ P dd ( u PM , u v ) π . E D ( M ) . ρ M dd ( u S , u MP ) π . t MP . g MP . dS M
L A env ( P ) = ∫∫ V ( P ) ρ P dd ( u PM , u v ) π . E atm _ diffus ( M ) π . ρ M dh ( u MP ) .t MP . g MP . dS M
L emis env ( P ) = ∫∫ V ( P ) ρ P dd ( u PM , u v ) π . ε M ( u MP ) . L CN ( T M ) . t MP . g MP . dS M
E atm _ diffus ( M ) = ∫∫ Ω sky L atm , ( u ; z M ) . n M . u .d ω + ∫∫ Ω sky ¯ L relief atm , ( u ; z M ) . n M . u .d ω
L BOA = L D ( P ) + L A ( P ) + L emis ( P )
= ( 1 ε ) E D ( P ) π + ( 1 ε ) L atm , + ε L CN ( T )
ΔL BOA = Δ [ ( 1 ε ) E D ( P ) π + ( 1 ε ) L atm , + ε L CN ( T ) ]
= Δ [ ( 1 ε ) E D ( P ) π ] + Δ [ ( 1 ε ) L atm , ] + Δ [ ε L CN ( T ) ]
= Δ ε E D ( P ) π Δ ε L atm , + Δ ε L CN ( T )
as Δ E D ( P ) π = Δ L atm , = ΔL CN ( T ) = 0 .
Then
Δ ε = ΔL BOA [ L CN ( T ) L atm , E D ( P ) π ]
ΔT = ΔL BOA ε L CN ( T ) T

Metrics