Abstract

– DPSK phase-and-amplitude regeneration with a NOLM-based phase-sensitive amplifier is demonstrated experimentally. For a highly degraded input signal, maximum differential phase errors were reduced from 82° to 41°, while the SNR was improved by more than 5-dB. Differential phase Q-factor improvement was better than 6-dB. The PSA was operated free of excess noise due to stimulated Brillouin scattering by using a binary phase modulated pulse train as the pump. The impact of pump fluctuations on regeneration performance is clarified. The regenerated signal was characterized by measurement of the constellation diagram by linear optical sampling, giving the first directly measured evidence of DPSK phase regeneration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).
    [Crossref]
  2. C. J. McKinstrie, C. Xie, and C. Xu, “Efects of cross-phase modulation on phase jitter in soliton systems with constant dispersion,” Opt. Lett. 28, 604–606 (2003).
    [Crossref] [PubMed]
  3. A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photonics Technol. Lett. 16, 1083–1085 (2004)
    [Crossref]
  4. A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
    [Crossref]
  5. M. Matsumoto, “Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators,” IEEE Photonics Technol. Lett. 17, 1055–1057 (2005).
    [Crossref]
  6. C. Pare, A. Villeneuve, P. A. Belanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461 (1996).
    [Crossref] [PubMed]
  7. I. R. Gabitov and P. M. Lushnikov, “Nonlinearity management in a dispersion managed system,” Opt. Lett. 27, 113–115 (2002).
    [Crossref]
  8. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.
  9. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27, 1616–1618 (2002).
    [Crossref]
  10. C. Xu and X. Liu, “Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27, 1619–1621 (2002).
    [Crossref]
  11. M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
    [Crossref]
  12. M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
    [Crossref]
  13. W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
    [Crossref]
  14. G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
    [Crossref]
  15. A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
    [Crossref]
  16. H. P. Yuen, “Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers,” Opt. Lett. 17, 73–75 (1992).
    [Crossref] [PubMed]
  17. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
    [Crossref] [PubMed]
  18. K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
    [Crossref] [PubMed]
  19. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).
  20. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 20, 4973–4979 (2004).
    [Crossref]
  21. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthld, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23, 178–186 (2005).
    [Crossref]
  22. C. Dorrer, “Complete characterization of periodic optical sources by use of sampled test-plus-reference interferometry,” Opt. Lett. 30, 2022–2024 (2005).
    [Crossref] [PubMed]
  23. I. Kim, C. Kim, and G. Li, “Requirements for the sampling source in coherent linear sampling,” Opt. Express 12, 2723–2730 (2004).
    [Crossref] [PubMed]
  24. R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994).
    [Crossref]
  25. S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
    [Crossref]
  26. K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

2006 (1)

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

2005 (6)

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

M. Matsumoto, “Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators,” IEEE Photonics Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).

C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthld, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23, 178–186 (2005).
[Crossref]

C. Dorrer, “Complete characterization of periodic optical sources by use of sampled test-plus-reference interferometry,” Opt. Lett. 30, 2022–2024 (2005).
[Crossref] [PubMed]

2004 (5)

I. Kim, C. Kim, and G. Li, “Requirements for the sampling source in coherent linear sampling,” Opt. Express 12, 2723–2730 (2004).
[Crossref] [PubMed]

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 20, 4973–4979 (2004).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photonics Technol. Lett. 16, 1083–1085 (2004)
[Crossref]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[Crossref] [PubMed]

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).
[Crossref]

2003 (1)

2002 (3)

2000 (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

1997 (1)

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

1996 (2)

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

C. Pare, A. Villeneuve, P. A. Belanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461 (1996).
[Crossref] [PubMed]

1994 (1)

R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994).
[Crossref]

1992 (2)

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

H. P. Yuen, “Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers,” Opt. Lett. 17, 73–75 (1992).
[Crossref] [PubMed]

1991 (1)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Bartolini, G. D.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

Belanger, P. A.

Croussore, K.

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).

K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[Crossref] [PubMed]

K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

Cvecek, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Devgan, P. S.

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

Doerr, C. R.

Doran, N. J.

Dorrer, C.

Gabitov, I. R.

Grigoryan, V. S.

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

Han, Y.

Hsia, C. H.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

Iwashita, K.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Jeong, J. M.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Kang, I.

Kath, W. L.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994).
[Crossref]

Khoe, G. D.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Kim, C.

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).

K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[Crossref] [PubMed]

I. Kim, C. Kim, and G. Li, “Requirements for the sampling source in coherent linear sampling,” Opt. Express 12, 2723–2730 (2004).
[Crossref] [PubMed]

K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

Kim, I.

Krummrich, P. M.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Kumar, P.

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994).
[Crossref]

Leuchs, G.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Leuthld, J.

Li, G.

K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).

I. Kim, C. Kim, and G. Li, “Requirements for the sampling source in coherent linear sampling,” Opt. Express 12, 2723–2730 (2004).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[Crossref] [PubMed]

K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

Li, R.

R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994).
[Crossref]

Liu, X.

Lushnikov, P. M.

Marhic, M. E.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Matsumoto, M.

M. Matsumoto, “Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators,” IEEE Photonics Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

McKinstrie, C. J.

Meissner, M.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Monsalve, C. C.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Noguchi, K.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Norimatsu, S.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Pare, C.

Radic, S.

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 20, 4973–4979 (2004).
[Crossref]

Ryf, R.

Schiek, R.

K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

Schmauss, B.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photonics Technol. Lett. 16, 1083–1085 (2004)
[Crossref]

Serkland, D. K.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

Shin, M.

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

Slusher, R. E.

Spalter, S.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Sponsel, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Striegler, A.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photonics Technol. Lett. 16, 1083–1085 (2004)
[Crossref]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

van den Borne, D.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Villeneuve, A.

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).
[Crossref]

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27, 1616–1618 (2002).
[Crossref]

Winzer, P. J.

Xie, C.

Xu, C.

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

Yuen, H. P.

Electron. Lett. (3)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (4)

M. Matsumoto, “Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators,” IEEE Photonics Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photonics Technol. Lett. 16, 1083–1085 (2004)
[Crossref]

M. Shin, P. S. Devgan, V. S. Grigoryan, and P. Kumar, “SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier,” IEEE Photonics Technol. Lett. 18, 49–51 (2006).
[Crossref]

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photonics Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

IEEE Photonics. Technol. Lett. (1)

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photonics. Technol. Lett. 9, 1020–1022 (1997).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (8)

H. P. Yuen, “Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers,” Opt. Lett. 17, 73–75 (1992).
[Crossref] [PubMed]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[Crossref] [PubMed]

C. Pare, A. Villeneuve, P. A. Belanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461 (1996).
[Crossref] [PubMed]

I. R. Gabitov and P. M. Lushnikov, “Nonlinearity management in a dispersion managed system,” Opt. Lett. 27, 113–115 (2002).
[Crossref]

C. J. McKinstrie, C. Xie, and C. Xu, “Efects of cross-phase modulation on phase jitter in soliton systems with constant dispersion,” Opt. Lett. 28, 604–606 (2003).
[Crossref] [PubMed]

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27, 1616–1618 (2002).
[Crossref]

C. Xu and X. Liu, “Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27, 1619–1621 (2002).
[Crossref]

C. Dorrer, “Complete characterization of periodic optical sources by use of sampled test-plus-reference interferometry,” Opt. Lett. 30, 2022–2024 (2005).
[Crossref] [PubMed]

Other (3)

K. Croussore, C. Kim, R. Schiek, and G. Li, “All-optical regeneration of DPSK signals based on phase-sensitive amplification,” presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” in Proc. SPIE Defense and Security Symposium,  5814, 166–175 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. FS, DL: fiber stretcher, delay line; VOA: optical attenuator; OC: optical circulator; PC: polarization controller; PD: photodiode; DI, SC: delay interferometer + sampling oscilloscope; Synth: synthesizer; BERT: bit-error-ratio tester; PM/AM: noise adding phase and amplitude modulators.

Fig. 2.
Fig. 2.

Measured (a-d) and calculated (e-h) signal output power versus relative input phase for the PSA for NLPS of 0.1π, 0.25π, 0.5π and 0.55π. Solid lines: amplified signal, dotted lines: transmitted signal power in the absence of the pump.

Fig. 3.
Fig. 3.

Signal waveform (a) back to back with added PN and AN and (b) after regeneration. AN is added at the sampling frequency of the oscilloscope (6.25 GHz). Intensity eye diagram (c) back to back with SNR of 5.75 dB, and (d) after regeneration for the same received power with an improved SNR of 11 dB.

Fig. 4.
Fig. 4.

Demodulated eye diagrams. Back to back with (a) no added noise; (b) with added AN only and (c) with PN and AN added. Note the lack of eye closure for the AN-only case. (d) Demodulated eye after phase-amplitude regeneration.

Fig. 5.
Fig. 5.

BER curves for back-to-back degraded data (squares) and regenerated data (triangles). Negative power penalty is 5 dB. Empty circles represent back-to-back data with only amplitude noise added.

Fig. 6.
Fig. 6.

From top to bottom: directly measured constellation diagram, histogram of signal power sampled at bit center and calculated differential phase (crosses) with distribution superimposed (solid line). Back to back signal (a) with no added noise and (b) with added PN and AN. (c) Signal after phase-and-amplitude regeneration.

Metrics