Abstract

– DPSK phase-and-amplitude regeneration with a NOLM-based phase-sensitive amplifier is demonstrated experimentally. For a highly degraded input signal, maximum differential phase errors were reduced from 82° to 41°, while the SNR was improved by more than 5-dB. Differential phase Q-factor improvement was better than 6-dB. The PSA was operated free of excess noise due to stimulated Brillouin scattering by using a binary phase modulated pulse train as the pump. The impact of pump fluctuations on regeneration performance is clarified. The regenerated signal was characterized by measurement of the constellation diagram by linear optical sampling, giving the first directly measured evidence of DPSK phase regeneration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xu, X. Liu and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
    [CrossRef]
  2. C. J. McKinstrie, C. Xie and C. Xu, "Efects of cross-phase modulation on phase jitter in soliton systems with constant dispersion," Opt. Lett. 28, 604-606 (2003).
    [CrossRef] [PubMed]
  3. A. Striegler and B. Schmauss, "All-optical DPSK signal regeneration based on cross-phase modulation," IEEE Photonics Technol. Lett. 16, 1083-1085 (2004)
    [CrossRef]
  4. A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
    [CrossRef]
  5. M. Matsumoto, "Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators," IEEE Photonics Technol. Lett. 17, 1055-1057 (2005).
    [CrossRef]
  6. C. Pare, A. Villeneuve, P. A. Belanger and N. J. Doran, "Compensating for dispersion and the nonlinear Kerr effect without phase conjugation," Opt. Lett. 21, 459-461 (1996).
    [CrossRef] [PubMed]
  7. I. R. Gabitov and P. M. Lushnikov, "Nonlinearity management in a dispersion managed system," Opt. Lett. 27, 113-115 (2002).
    [CrossRef]
  8. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter and P. M. Krummrich, "Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system," in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.
  9. X. Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616-1618 (2002).
    [CrossRef]
  10. C. Xu and X. Liu, "Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission," Opt. Lett. 27, 1619-1621 (2002).
    [CrossRef]
  11. M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
    [CrossRef]
  12. M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
    [CrossRef]
  13. W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
    [CrossRef]
  14. G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
    [CrossRef]
  15. A. Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electron. Lett. 32, 677-679 (1996).
    [CrossRef]
  16. H. P. Yuen, "Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers," Opt. Lett. 17, 73-75 (1992).
    [CrossRef] [PubMed]
  17. K. Croussore, C. Kim and G. Li, "All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification," Opt. Lett. 29, 2357-2359 (2004).
    [CrossRef] [PubMed]
  18. K. Croussore, I. Kim, Y. Han, C. Kim and G. Li, "Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification," Opt. Express 13, 3945-3950 (2005).
    [CrossRef] [PubMed]
  19. K. Croussore, C. Kim and G. Li, "All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification," in Proc. SPIE Defense and Security Symposium, 5814, 166-175 (2005).
  20. C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 20, 4973-4979 (2004).
    [CrossRef]
  21. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthld and P. J. Winzer, "Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology," J. Lightwave Technol. 23, 178-186 (2005).
    [CrossRef]
  22. C. Dorrer, "Complete characterization of periodic optical sources by use of sampled test-plus-reference interferometry," Opt. Lett. 30, 2022-2024 (2005).
    [CrossRef] [PubMed]
  23. I. Kim, C. Kim and G. Li, "Requirements for the sampling source in coherent linear sampling," Opt. Express 12, 2723-2730 (2004).
    [CrossRef] [PubMed]
  24. R. Li, P. Kumar and W. L. Kath, "Dispersion compensation with phase-sensitive optical amplifiers," J. Lightwave Technol. 12, 541-549 (1994).
    [CrossRef]
  25. Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
    [CrossRef]
  26. K. Croussore, C. Kim, R. Schiek and G. Li, "All-optical regeneration of DPSK signals based on phase-sensitive amplification," presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

2006 (1)

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

2005 (5)

2004 (5)

I. Kim, C. Kim and G. Li, "Requirements for the sampling source in coherent linear sampling," Opt. Express 12, 2723-2730 (2004).
[CrossRef] [PubMed]

K. Croussore, C. Kim and G. Li, "All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification," Opt. Lett. 29, 2357-2359 (2004).
[CrossRef] [PubMed]

A. Striegler and B. Schmauss, "All-optical DPSK signal regeneration based on cross-phase modulation," IEEE Photonics Technol. Lett. 16, 1083-1085 (2004)
[CrossRef]

C. Xu, X. Liu and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 20, 4973-4979 (2004).
[CrossRef]

2003 (1)

2002 (3)

2000 (1)

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

1997 (1)

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

1996 (2)

A. Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electron. Lett. 32, 677-679 (1996).
[CrossRef]

C. Pare, A. Villeneuve, P. A. Belanger and N. J. Doran, "Compensating for dispersion and the nonlinear Kerr effect without phase conjugation," Opt. Lett. 21, 459-461 (1996).
[CrossRef] [PubMed]

1994 (1)

R. Li, P. Kumar and W. L. Kath, "Dispersion compensation with phase-sensitive optical amplifiers," J. Lightwave Technol. 12, 541-549 (1994).
[CrossRef]

1992 (2)

Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
[CrossRef]

H. P. Yuen, "Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers," Opt. Lett. 17, 73-75 (1992).
[CrossRef] [PubMed]

1991 (1)

M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

Bartolini, G. D.

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

Belanger, P. A.

Croussore, K.

Cvecek, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Devgan, P. S.

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

Doerr, C. R.

Doran, N. J.

Dorrer, C.

Gabitov, I. R.

Grigoryan, V. S.

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

Han, Y.

Hsia, C. H.

M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

Imajuku, W.

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

A. Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electron. Lett. 32, 677-679 (1996).
[CrossRef]

Iwashita, S.

Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
[CrossRef]

Jeong, J. M.

M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

Kang, I.

Kath, W. L.

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

R. Li, P. Kumar and W. L. Kath, "Dispersion compensation with phase-sensitive optical amplifiers," J. Lightwave Technol. 12, 541-549 (1994).
[CrossRef]

Kim, C.

Kim, I.

Kumar, P.

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

R. Li, P. Kumar and W. L. Kath, "Dispersion compensation with phase-sensitive optical amplifiers," J. Lightwave Technol. 12, 541-549 (1994).
[CrossRef]

Leuchs, G.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Leuthld, J.

Li, G.

Li, R.

R. Li, P. Kumar and W. L. Kath, "Dispersion compensation with phase-sensitive optical amplifiers," J. Lightwave Technol. 12, 541-549 (1994).
[CrossRef]

Liu, X.

Lushnikov, P. M.

Marhic, M. E.

M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

Matsumoto, M.

M. Matsumoto, "Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators," IEEE Photonics Technol. Lett. 17, 1055-1057 (2005).
[CrossRef]

McKinstrie, C. J.

Meissner, M.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Noguchi, K.

Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
[CrossRef]

Norimatsu,

Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
[CrossRef]

Pare, C.

Radic, S.

C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 20, 4973-4979 (2004).
[CrossRef]

Ryf, R.

Schmauss, B.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

A. Striegler and B. Schmauss, "All-optical DPSK signal regeneration based on cross-phase modulation," IEEE Photonics Technol. Lett. 16, 1083-1085 (2004)
[CrossRef]

Serkland, D. K.

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

Shin, M.

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

Slusher, R. E.

Sponsel, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Striegler, A.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

A. Striegler and B. Schmauss, "All-optical DPSK signal regeneration based on cross-phase modulation," IEEE Photonics Technol. Lett. 16, 1083-1085 (2004)
[CrossRef]

Takada, A.

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

A. Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electron. Lett. 32, 677-679 (1996).
[CrossRef]

Villeneuve, A.

Wei, X.

C. Xu, X. Liu and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

X. Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616-1618 (2002).
[CrossRef]

Winzer, P. J.

Xie, C.

Xu, C.

Yamabayashi, Y.

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

Yuen, H. P.

Electron. Lett. (3)

M. E. Marhic, C. H. Hsia and J. M. Jeong, "Optical Amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

A. Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electron. Lett. 32, 677-679 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

M. Matsumoto, "Regeneration of RZ-DPSK signals by Fiber-based all-optical regenerators," IEEE Photonics Technol. Lett. 17, 1055-1057 (2005).
[CrossRef]

A. Striegler and B. Schmauss, "All-optical DPSK signal regeneration based on cross-phase modulation," IEEE Photonics Technol. Lett. 16, 1083-1085 (2004)
[CrossRef]

M. Shin, P. S. Devgan, V. S. Grigoryan and P. Kumar, "SNR Improvement of DPSK signals in a semiconductor optical regenerative amplifier," IEEE Photonics Technol. Lett. 18, 49-51 (2006).
[CrossRef]

Norimatsu, S. ; Iwashita, K. ; Noguchi, K , "An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes," IEEE Photonics Technol. Lett. 4, 765-767 (1992).
[CrossRef]

IEEE Photonics. Technol. Lett. (1)

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (8)

Other (3)

K. Croussore, C. Kim, R. Schiek and G. Li, "All-optical regeneration of DPSK signals based on phase-sensitive amplification," presented at Optics in the Southeast, OSA Regional Meeting, Charlotte NC (November 4-6, 2004).

K. Croussore, C. Kim and G. Li, "All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification," in Proc. SPIE Defense and Security Symposium, 5814, 166-175 (2005).

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter and P. M. Krummrich, "Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system," in Proceedings of the Conference on Optical Fiber Communications (OFC) (Optical Society of America, 2005) OTh05.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. FS, DL: fiber stretcher, delay line; VOA: optical attenuator; OC: optical circulator; PC: polarization controller; PD: photodiode; DI, SC: delay interferometer + sampling oscilloscope; Synth: synthesizer; BERT: bit-error-ratio tester; PM/AM: noise adding phase and amplitude modulators.

Fig. 2.
Fig. 2.

Measured (a-d) and calculated (e-h) signal output power versus relative input phase for the PSA for NLPS of 0.1π, 0.25π, 0.5π and 0.55π. Solid lines: amplified signal, dotted lines: transmitted signal power in the absence of the pump.

Fig. 3.
Fig. 3.

Signal waveform (a) back to back with added PN and AN and (b) after regeneration. AN is added at the sampling frequency of the oscilloscope (6.25 GHz). Intensity eye diagram (c) back to back with SNR of 5.75 dB, and (d) after regeneration for the same received power with an improved SNR of 11 dB.

Fig. 4.
Fig. 4.

Demodulated eye diagrams. Back to back with (a) no added noise; (b) with added AN only and (c) with PN and AN added. Note the lack of eye closure for the AN-only case. (d) Demodulated eye after phase-amplitude regeneration.

Fig. 5.
Fig. 5.

BER curves for back-to-back degraded data (squares) and regenerated data (triangles). Negative power penalty is 5 dB. Empty circles represent back-to-back data with only amplitude noise added.

Fig. 6.
Fig. 6.

From top to bottom: directly measured constellation diagram, histogram of signal power sampled at bit center and calculated differential phase (crosses) with distribution superimposed (solid line). Back to back signal (a) with no added noise and (b) with added PN and AN. (c) Signal after phase-and-amplitude regeneration.

Metrics