Abstract

The ultimate spectral and spatial resolutions of distributed sensing based on stimulated Brillouin scattering (SBS) in optical fibers is shown for several-nanosecond Stokes pulses. Precise measurements of the local Brillouin frequency, with a spectral resolution close to the natural linewidth and, simultaneously, the spatial resolution of the pulse length are provided by AC detection of the output pump in the case of a finite cw component (base) of the Stokes pulse. Simulation examples of SBS-based sensing for fibers containing sections with different Brillouin frequencies are presented, demonstrating the high resolution of the sensing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, "22-km distributed temperature sensor using Brillouin gain in an optical fiber," Opt. Lett. 18, 552-554 (1993).
    [CrossRef] [PubMed]
  2. M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
    [CrossRef]
  3. T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
    [CrossRef]
  4. A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightwave Technol. 20, 1425-1432 (2002).
    [CrossRef]
  5. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
  6. X. Bao, A. Brown, M. DeMerchant, and J. Smith, "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (< 10-ns) pulses," Opt. Lett. 24, 510-512 (1999).
    [CrossRef]
  7. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouinbased distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (2000).
    [CrossRef]
  8. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
    [CrossRef]
  9. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran (Cambridge University Academic Press, 1986).

2002

2000

1999

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

X. Bao, A. Brown, M. DeMerchant, and J. Smith, "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (< 10-ns) pulses," Opt. Lett. 24, 510-512 (1999).
[CrossRef]

1998

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

1997

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
[CrossRef]

1993

Bao, X.

Brown, A.

Delavaux, J.-M.

DeMerchant, M.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

Feced, R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Jackson, D. A.

Lecoeuche, V.

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
[CrossRef]

Pannell, C. N.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
[CrossRef]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

Smith, J.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
[CrossRef]

Toulouse, J.

Ubachs, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Velchev, I.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Webb, D. J.

Yeniay, A.

IEEE J. Quantum Electron.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, "Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers," IEEE J. Quantum Electron. 34, 645 - 659 (1998).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, "Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

J. Lightwave Technol.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1841-1851 (1997).
[CrossRef]

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

Opt. Lett.

Other

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran (Cambridge University Academic Press, 1986).

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Brillouin spectra resolved in the time domain by DC (a) and AC (b) detection for the pump power P p = 5 mW and the Stokes pulse with duration τ s = 3 ns, peak power P s = 10 mW, extinction ratio ER = 15 dB, and for the fiber length L = 10 m.

Fig. 2.
Fig. 2.

Brillouin spectrum linewidth vs Stokes pulse duration for DC (a) and AC (b) detection at t = 100 ns, different extinction ratio and the same pump and Stokes pulse parameters as in Fig. 1. Dashed line shows the natural Brillouin linewidth.

Fig. 3.
Fig. 3.

SBS-based sensing of the boundary between two 10-m fibers with 75 MHz-shifted Brillouin frequencies by a 1-ns Stokes pulse with 15-dB (a,b) and 50-dB (c) base for DC (a) and AC (b,c) detection, and the same other parameters as in Fig. 1. The thick dashed curve is at time moment t = 105.5 ns and corresponds to the boundary between the fiber sections.

Fig. 4.
Fig. 4.

SBS-based sensing of a 10-cm section with 75 MHz-shifted Brillouin frequency in the middle of a 10-m fiber by a 1-ns Stokes pulse with 15-dB (a) and 50-dB (b) base for AC detection and the same other parameters as in Fig. 1. Thick dashed curves are at the time moment t = 55.5 ns and the frequency detuning Δν= 75 MHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ˙ p v E p ' = Q E s ,
E ˙ s + v E s ' = Q * E p ,
Q ¨ + 2 ( Γ i Ω ) Q ˙ + ( Ω B 2 Ω 2 2 i Γ Ω ) Q = i g E p E s * ,
E s ( z = 0 , t ) = ( E s E b ) A ( t ) + E b ,
α DC = P p P p ( z = 0 , t )
α AC = P p ( z = 0 , t = 0 ) P p ( z = 0 , t ) ,

Metrics