Abstract

Experimental results on wavelength-dependent angular dispersion in InGaAsP triangular lattice planar photonic crystals are presented. An abrupt variation of the angular dispersion is observed for TM-polarized waves whose frequencies are comprised between those of the fourth and sixth allowed bands. According to the crystal period, the measured angle of refraction is found to either decrease or increase by 30° within a wavelength range smaller than 30 nm. Experimental results are reproduced well from 2D finite difference time domain calculations. The observed phenomena are interpreted from the coupling of the incident light to different modes of the photonic crystal that travel with different group velocities and propagate in different directions within the crystal. Mode dispersion curves and mode patterns are calculated along with isofrequency curves to support this explanation. The observed discontinuous wavelength super-refraction opens a new approach to the application of superprisms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
    [CrossRef]
  2. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
    [CrossRef]
  3. S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
    [CrossRef] [PubMed]
  4. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated, circuits in Silicon-on-insulator," Opt. Express 12, 1583-1591, (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1591.
    [CrossRef] [PubMed]
  5. T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journ. Quantum. Electron. 38, 909-914, (2002).
    [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
    [CrossRef]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
    [CrossRef]
  8. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
    [CrossRef]
  9. L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
    [CrossRef]
  10. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
    [CrossRef]
  11. A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, "Experimental evidence for superprism phenomena in SOI photonic crystals," Opt. Express 12, 5690-5696 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5690.
    [CrossRef] [PubMed]
  12. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
    [CrossRef]
  13. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
    [CrossRef]

2004 (4)

2003 (2)

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
[CrossRef] [PubMed]

2002 (2)

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journ. Quantum. Electron. 38, 909-914, (2002).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

2001 (1)

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

2000 (1)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Baba, T.

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journ. Quantum. Electron. 38, 909-914, (2002).
[CrossRef]

Baehr-Jones, T.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
[CrossRef]

Baets, R.

Baumberg, J. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Beckx, S.

Benisty, H.

S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
[CrossRef] [PubMed]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Cassan, E.

Charlton, M. D. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

De La Rue, R. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Dumon, P.

El Melhaoui, L.

Fedeli, J. M.

Gallet, J.-F.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

Hochberg, M.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
[CrossRef]

Houdré, R.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Krauss, T. F.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Laval, S.

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Lupu, A.

Luyssaert, B.

Lyan, P.

Mazilu, M.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

Nakamura, M.

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journ. Quantum. Electron. 38, 909-914, (2002).
[CrossRef]

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Netti, M. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Oesterle, U.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Olivier, S.

S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
[CrossRef] [PubMed]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Parker, G. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Pearsall, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Perney, N. M. B.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Rattier, M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Scherer, A.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Smith, C. J. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Taillaert, D.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

Weisbuch, C.

S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
[CrossRef] [PubMed]

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Wiaux, V.

Witzens, J.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

Zoorob, M.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

App. Phys. Lett. (1)

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, "Coupled guide and cavity in a two-dimensional photonic crystal," App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

IEEE Journ. Quantum. Electron. (2)

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journ. Quantum. Electron. 38, 909-914, (2002).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE Journ. Quantum. Electron. 38, 915-918 (2002).
[CrossRef]

Opt Lett. (1)

S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt Lett. 28, 2246-2248, (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Photonic and Nanostruct. (1)

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator," Photonic and Nanostruct. 1, 31-36 (2003).
[CrossRef]

Phys Rev. E (1)

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys Rev. E 69, 046609 (2004).
[CrossRef]

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099, (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1(a).
Fig. 1(a).

Scanning electron microscope photograph of the etched photonic crystal structure

Fig. 1(b).
Fig. 1(b).

Optical microscope photograph of the photonic crystal area with the 2 μm width input waveguide

Figs. 2.(a)–(b).
Figs. 2.(a)–(b).

Intensity distribution of the TM polarized light measured at the sample output facet : (a) PhC lattice period a = 0.672 μm, (b) a = 0.744 μm

Figs. 2. (c)– (d)
Figs. 2. (c)– (d)

Intensity distribution of the TE polarized light measured at the sample output facet : (c) PhC lattice period a = 0.672 μm, (d) a = 0.744 μm.

Fig. 3. (a).
Fig. 3. (a).

Angular dispersion for the TM polarization. PhC lattice with period a = 0.672 μm.

Fig. 3. (b).
Fig. 3. (b).

Angular dispersion for the TM polarization. PhC lattice with period a = 0.744 μm.

Fig. 4:
Fig. 4:

E-Field intensity distribution and beam propagation within the photonic crystal calculated from a 2D- FDTD model. (a)-(b): PhC lattice of 672 nm period. (c)-(d): PhC lattice of 744 nm period. In each figure, the vertical blue lines delimit the PhC area, the incidence angle onto the PhC is 8°, and the injected beam width is 3 μm. The white regions correspond to a near zero field intensity. The field intensity increases from green to red.

Fig. 5.
Fig. 5.

(a) band diagram of the triangular lattice calculated for the TM polarization. (b): isofrequency contours calculated for a/λ = 0.415, 0.435, 0.46, 0.49, respectively. Only the 5th and 6th bands of interest are represented. In each figure, the purple thick line represents the direction of the interface. The blue arrow is for the incident wave vector. The red arrows indicate the propagation direction(s) in the photonic crystal, which correspond to the measured transmissions. The black dotted arrows indicate the directions of some diffracted waves, which are not detected at the PhC output. Multiple arrows (either red or black) are represented in the regions of cusps and dips where the angular deflection can be high for small changes in the wavevector.

Fig. 6.
Fig. 6.

E-field patterns calculated at the normalized frequency a/λ=0.417. (a): plane wave calculations [fourth PhC mode, ΓK direction, Fig. 5(b)]. (b) 2D-FDTD simulations (incidence angle of 8° onto the photonic crystal, Fig. 4). The blue and red regions in (a) and (b) correspond to the highest values of the field modulus. The white region in (a) and the light green region in (b) correspond to fields with very small amplitudes.

Metrics