Abstract

Using experiment and simulation, we describe the radiative properties of a single subwavelength aperture surrounded by concentric annular grooves on the exit surface using terahertz (THz) time-domain techniques. The approach allows for the unique determination of the contribution from each exit surface annular groove to the radiated THz temporal waveform. Based on a simple model, we discuss why the grooves on the exit surface necessarily enhance the time-integrated THz power radiated from the metal structure relative to an equivalent bare aperture. Each exit side groove is shown to produce a time-delayed replica of the total THz pulse that is evanescently coupled through the subwavelength aperture. These replicas are coherently superposed on each other and temporally shifted from one another in accordance with the spatial distance between the grooves. The use of patterns incorporating double-sided surface corrugation therefore allows for greater flexibility in generating complex temporal THz pulse shapes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
    [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
    [CrossRef]
  4. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films, Appl. Opt. 42, 6811-6815 (2003).
    [CrossRef] [PubMed]
  5. L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
    [CrossRef] [PubMed]
  6. F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  7. F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
    [CrossRef] [PubMed]
  8. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  9. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
    [CrossRef]
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  11. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
    [CrossRef]
  12. A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249.
    [CrossRef]
  13. D. Grischkowsky, in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics Publishing, Philadelphia, 1992) and references therein.
  14. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
    [CrossRef] [PubMed]
  15. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
    [CrossRef] [PubMed]

2005 (4)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249.
[CrossRef]

H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
[CrossRef] [PubMed]

2004 (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

2003 (4)

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films, Appl. Opt. 42, 6811-6815 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

2001 (1)

1954 (1)

C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

1944 (1)

H. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Agrawal, A.

Baida, F. I.

Bethe, H.

H. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Cao, H.

Degiron, A.

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Ebbesen, T. W.

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Ebbesen, T.W.

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

Garcia-Vidal, L. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Guizal, B.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Martin-Moreno, F.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Martin-Moreno, L.

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

Nahata, A.

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249.
[CrossRef]

H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Van Labeke, D.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. J. Garcıa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A: Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

Nanotechnol. (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnol. 13, 429-432 (2002).
[CrossRef]

New J. Phys. (1)

A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249.
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

H. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. Garcıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 21390114 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401(2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 220-222 (2002).
[CrossRef]

Other (1)

D. Grischkowsky, in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics Publishing, Philadelphia, 1992) and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmitted time-domain waveforms through bullseye structures consisting of periodic multiple annular grooves on the exit surface. In all cases, broadband THz radiation is incident on the structures from above (a) Cross-sectional line diagrams of the structures containing zero, two, four and six periodically spaced concentric annular grooves (b) Experimentally observed time-domain waveforms for the structures shown in part (a). The temporal waveforms have been offset from the origin for clarity. The number of oscillations, after the initial bipolar waveform, matches the number of annular grooves on the exit side. The small oscillation present at ~22 ps in all of the waveforms is caused by a reflection with the experimental system.

Fig. 2.
Fig. 2.

Schematic diagram showing the transmission mechanism through (a) a bare subwavelength aperture, (b) a subwavelength aperture surrounded by grooves on the exit side. The component shown by the red arrow corresponds to the waveform component radiated by the subwavelength aperture. The component shown by the blue arrow corresponds to the bound surface modes coupled to the metal-dielectric interface on the exit side. These bound modes are partially radiated by scattering from the grooves on the exit side. This latter component is temporally delayed with respect to the initial bipolar waveform.

Fig. 3.
Fig. 3.

(a) Cross-sectional line diagrams of bullseye structures with four annular grooves on the entrance and the exit surface (b) Transmitted time-domain waveforms through the structures shown in part (a). The temporal overlap of the contributions from individual grooves for the two sample orientations demonstrates clearly that the center-to-center spacing between features on the exit surface of the metal foil leads to the relevant time delays in the transmitted THz waveforms.

Fig. 4.
Fig. 4.

Comparison between experiment and theory for a four groove bullseye structure. The red trace corresponds to the transmitted THz waveform obtained for the bullseye structure with the grooves on the exit surface. The blue trace corresponds to results from a simulation obtain by using Eq. (1) and assuming Eap(t) corresponds to the temporal waveform for a bare aperture.

Fig. 5.
Fig. 5.

Comparison between experiment and theory for a bullseye structure with double sided corrugation. (a) Schematic cross-sectional views of bullseye structures with annular grooves on one or both surfaces (b) The transmitted time-domain waveforms for the structures shown in part (a). (c) The black trace corresponds to the experimentally observed time-domain waveform for the bullseye structure with double-sided corrugation. The red trace corresponds to results from a simulation obtain by using Eq. (1) and assuming Eap(t) is given by the temporal waveform for a bullseye structure corrugated on only the input surface.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E tot ( t ) = n c n E ap ( t T n ) ,

Metrics