Abstract

We study the optical plasmonic properties of metal surfaces which have a periodic lattice of voids buried immediately beneath their flat upper surface. Light reflection spectra calculated in the framework of a self-consistent electromagnetic multiple-scattering layer-KKR approach exhibit two types of plasmon resonances originating from the excitation of different plasmon modes: surface plasmon-polaritons propagating on the planar surface of metal and Mie plasmons localized in the buried voids. Coupling between these two types of plasma oscillation leads to an enhancement of the surface plasmon-polariton resonances even for close-packed void lattices. Our theoretical model quantitatively agrees with experimental results, demonstrating that planar surfaces can exhibit strong plasmonic field enhancements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
    [CrossRef]
  2. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surf ace-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000).
    [CrossRef]
  3. T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001)
    [CrossRef]
  4. F.J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  5. W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  7. C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
    [CrossRef] [PubMed]
  8. A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
    [CrossRef]
  9. A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef] [PubMed]
  10. S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
    [CrossRef] [PubMed]
  11. O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
    [CrossRef]
  12. J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
    [CrossRef]
  13. N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
    [CrossRef]
  14. T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
    [CrossRef]
  15. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons. Electromagnetic Waves at Surface and Interfaces. (North-Holland Publishing Company, Amsterdam-New York-Oxford, 1982).
  16. T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
    [CrossRef]
  17. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49 (1998); "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," 132, 189 (2000).
    [CrossRef]
  18. P.B. Johnson, R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  19. T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
    [CrossRef]
  20. P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
    [CrossRef] [PubMed]
  21. M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
    [CrossRef]
  22. T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
    [CrossRef] [PubMed]

2005 (4)

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
[CrossRef] [PubMed]

2004 (5)

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
[CrossRef]

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

2003 (2)

W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

2002 (1)

F.J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

2001 (3)

T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001)
[CrossRef]

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

2000 (2)

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

I. Avrutsky, Y. Zhao, and V. Kochergin, "Surf ace-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000).
[CrossRef]

1999 (1)

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

1996 (1)

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

1972 (1)

P.B. Johnson, R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Abdelsalem, M.

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

Abdelsalem, M.E.

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

Avrutsky, I.

Barnes, W.L.

W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

Bartlett, P.N.

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
[CrossRef] [PubMed]

Baumberg, J.J.

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Birkin, P.R.

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Christy, R.W.

P.B. Johnson, R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Coyle, S.

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Dereux, A.

W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T.W.

W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

García de Abajo, F.J.

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
[CrossRef]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

García-Vidal, F.J.

F.J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Ghanem, M.A.

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Giessen, H.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Gippius, N.A.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Hendriks, M.A.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Ito, T.

T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001)
[CrossRef]

Johnson, P.B.

P.B. Johnson, R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kaler, E.W.

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
[CrossRef] [PubMed]

Kelly, J.J.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Kim, D.S.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kitson, S.C.

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

Kochergin, V.

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Lenhoff, A.M.

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Lienau, C.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

F.J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Modinos, A.

N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49 (1998); "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," 132, 189 (2000).
[CrossRef]

Netti, M.C.

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Park, D.J.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Popov, V.V.

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
[CrossRef]

Preist, T.W.

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

Ropers, C.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Sakoda, K.

T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001)
[CrossRef]

Sambles, J.R.

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

Stefanou, N.

N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49 (1998); "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," 132, 189 (2000).
[CrossRef]

Steinmeyer, G.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stibenz, G.

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
[CrossRef] [PubMed]

Teperik, T.V.

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
[CrossRef]

Tessier, P.M.

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Tikhodeev, S.G.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Velev, O.D.

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Vos, W.L.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Whittaker, D.M.

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Wijnhoven, J.E.G.J.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Yannopapas, V.

N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49 (1998); "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," 132, 189 (2000).
[CrossRef]

Zentgraf, T.

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

Zevenhuizen, S.J.M.

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

Zhao, Y.

Adv. Mater. (2)

J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890, 2000.
[CrossRef]

M.E. Abdelsalem, P.N. Bartlett, J.J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90 (2004).
[CrossRef]

Faraday Discuss. (1)

P.N. Bartlett, J.J. Baumberg, S. Coyle, and M. Abdelsalem, "Optical properties of nanostructured metal films," Faraday Discuss. 125, 117 (2004).
[CrossRef] [PubMed]

Nature (2)

O.D. Velev, P.M. Tessier, A.M. Lenhoff, and E.W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

W.L. Barnes, A. Dereux, T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (7)

T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001)
[CrossRef]

F.J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6242 (1996).
[CrossRef]

A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

T.V. Teperik, V.V. Popov, and F.J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402 (2004).
[CrossRef]

P.B. Johnson, R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, "Waveguide plasmon-polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, and J. J. Baumberg, "Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces," Phys. Rev. Lett. 95, 116802 (2005)
[CrossRef] [PubMed]

Phys. Stat. Sol. C (1)

T.V. Teperik, V.V. Popov, F.J. García de Abajo, and J.J. Baumberg, "Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal," Phys. Stat. Sol. C 2,3912-3915 (2005).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Solid State Commun. (1)

N. Stefanou, A. Modinos, and V. Yannopapas", Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

Other (2)

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons. Electromagnetic Waves at Surface and Interfaces. (North-Holland Publishing Company, Amsterdam-New York-Oxford, 1982).

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49 (1998); "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," 132, 189 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Nanoporous metal surface with a 2D hexagonal lattice of spherical voids.

Fig. 2.
Fig. 2.

(color online) Reflectivity spectra for p-polarized light with its plane of incidence along the Γ‒M direction (azimuthal angle ϕ = 0) incident onto a planar gold surface with a hexagonal 2D lattice of spherical voids of diameter d = 600 nm as a function of photon energy ħω and angle of incidence θ. Distance from the planar metal surface to the top of voids, h, is 5 nm and |a| = |b| = 650 nm. The curves labeled with q pq indicate the energies of the surface plasmon-polaritons estimated in the ‘empty lattice approximation’. The horizontal lines mark the energy of the fundamental (l=1), the second (1=2) and the third (l=3) Mie-plasmon modes of a single void in bulk gold. Reflectivity spectra are normalized to the reflectivity of homogeneous planar surface of bulk gold.

Fig. 3.
Fig. 3.

The first Brillouin zone and the wavevectors q pq of surface plasmon-polaritons in the lowest frequency subband with k along the T-M direction.

Fig. 4.
Fig. 4.

(color online) Snapshots of the normal-to-surface electric-field component in plasmon modes excited at points A, B, C and D of the dispersion plane in Fig. 2 at the same particular time in the optical cycle. Amplitude of the electric field is normalized to the amplitude of electric field in the incident light.

Fig. 5.
Fig. 5.

(color online) Reflectivity spectra measured from the surface of nanoporous gold formed by periodical arrangements of close-packed spherical voids of diameter d = 600 nm buried just beneath a flat surface of gold. The measurements were performed for p-polarized light with the plane of incidence along the Γ‒M direction (ϕ = 0). Reflectivity spectra are normalized to the reflectivity of homogeneous planar surface of bulk gold.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q pq 2 = ( ω c ) 2 ω 2 ω 2 2 ω 2 ω p 2

Metrics