Abstract

We observe experimentally, the first time to our knowledge, two types of composite gap solitons in optically induced one-dimensional nonlinear lattice in LiNbO3 crystal. We observe the staggered bright composite gap soliton when a single Gauss probe beam is incident at Bragg angle as well as a dipole probe beam is incident at normal incidence. When a single Gauss beam is at normal incidence, the in-phase bright composite gap solitons are observed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  2. A. S. Davydov and N. I. Kislukha, “Solitary excitation in one-dimensional molecular chains,” Phys. Status Solodi B 59, 465–470 (1973).
    [Crossref]
  3. W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
    [Crossref]
  4. A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
    [Crossref] [PubMed]
  5. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
    [Crossref]
  6. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
    [Crossref]
  7. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
    [Crossref] [PubMed]
  8. F. Chen, M. Stepic, C. E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314–4324 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4314
    [Crossref] [PubMed]
  9. Z. Chen and K. MaCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019–2021 (2002).
    [Crossref]
  10. J. Petter, J. Schröder, D. Träger, and C. Denz, “Optical control of arrays of photorefractive screening solitons,” Opt. Lett. 28, 438440 (2003).
    [Crossref] [PubMed]
  11. A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
    [Crossref] [PubMed]
  12. D. Neshev, Y. S. Kivshar, H. Martin, and Z. Chen, “Soliton stripes in two-dimensional nonlinear photonic lattices,” Opt. Lett. 29, 486488 (2004).
    [Crossref] [PubMed]
  13. S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
    [Crossref]
  14. D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
    [Crossref] [PubMed]
  15. D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, nlin-ps/0405019.
  16. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
    [Crossref] [PubMed]
  17. F. Fedele, J. Yang, and Z. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30, 1506–1508 (2005).
    [Crossref] [PubMed]
  18. F. Fedele, J. Yang, and Z. Chen, “Properties of defect modes in one-dimensional optically induced photonic lattices,” Stud. Appl. Math. 115, 277–299 (2005).
    [Crossref]
  19. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710–712 (2003).
    [Crossref] [PubMed]
  20. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
    [Crossref]

2005 (3)

2004 (2)

D. Neshev, Y. S. Kivshar, H. Martin, and Z. Chen, “Soliton stripes in two-dimensional nonlinear photonic lattices,” Opt. Lett. 29, 486488 (2004).
[Crossref] [PubMed]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

2003 (5)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

J. Petter, J. Schröder, D. Träger, and C. Denz, “Optical control of arrays of photorefractive screening solitons,” Opt. Lett. 28, 438440 (2003).
[Crossref] [PubMed]

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710–712 (2003).
[Crossref] [PubMed]

2002 (2)

Z. Chen and K. MaCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019–2021 (2002).
[Crossref]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

2001 (1)

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[Crossref] [PubMed]

1999 (1)

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

1998 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

1996 (1)

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
[Crossref]

1987 (1)

E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

1979 (1)

W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
[Crossref]

1973 (1)

A. S. Davydov and N. I. Kislukha, “Solitary excitation in one-dimensional molecular chains,” Phys. Status Solodi B 59, 465–470 (1973).
[Crossref]

Aitchison, J. S.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Boyd, A. R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

Chen, F.

Chen, Z.

Christodoulides, D. N.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

Davydov, A. S.

A. S. Davydov and N. I. Kislukha, “Solitary excitation in one-dimensional molecular chains,” Phys. Status Solodi B 59, 465–470 (1973).
[Crossref]

Denz, C.

J. Petter, J. Schröder, D. Träger, and C. Denz, “Optical control of arrays of photorefractive screening solitons,” Opt. Lett. 28, 438440 (2003).
[Crossref] [PubMed]

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

Desyatnikov, A. S.

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

Eeisenberg, H. S.

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

Eisenberg, H. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Fedele, F.

F. Fedele, J. Yang, and Z. Chen, “Properties of defect modes in one-dimensional optically induced photonic lattices,” Stud. Appl. Math. 115, 277–299 (2005).
[Crossref]

F. Fedele, J. Yang, and Z. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30, 1506–1508 (2005).
[Crossref] [PubMed]

Fleischer, J. W.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

Heeger, A. J.

W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
[Crossref]

Kip, D.

Kislukha, N. I.

A. S. Davydov and N. I. Kislukha, “Solitary excitation in one-dimensional molecular chains,” Phys. Status Solodi B 59, 465–470 (1973).
[Crossref]

Kivshar, Y.

Kivshar, Y. S.

D. Neshev, Y. S. Kivshar, H. Martin, and Z. Chen, “Soliton stripes in two-dimensional nonlinear photonic lattices,” Opt. Lett. 29, 486488 (2004).
[Crossref] [PubMed]

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, nlin-ps/0405019.

Krolikowski, W.

MaCarthy, K.

Mandelik, D.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

Manela, O.

Martin, H.

Morandotti, R.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Neshev, D.

Orlov, S.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
[Crossref]

Ostrovskaya, E.

Ostrovskaya, E. A.

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

Pelinovsky, D. E.

D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, nlin-ps/0405019.

Peschel, U.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

Petter, J.

Runde, D.

Ruter, C. E.

Schieffer, J. R.

W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
[Crossref]

Schröder, J.

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

Segev, M.

F. Chen, M. Stepic, C. E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314–4324 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4314
[Crossref] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
[Crossref]

Shandarov, V.

Silberberg, Y.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Smerzi, A.

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[Crossref] [PubMed]

Stepic, M.

Su, W. P.

W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
[Crossref]

Sukhorukov, A. A.

D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, nlin-ps/0405019.

Träger, D.

Trombettoni, A.

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[Crossref] [PubMed]

Yablonovich, E.

E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yang, J.

F. Fedele, J. Yang, and Z. Chen, “Properties of defect modes in one-dimensional optically induced photonic lattices,” Stud. Appl. Math. 115, 277–299 (2005).
[Crossref]

F. Fedele, J. Yang, and Z. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30, 1506–1508 (2005).
[Crossref] [PubMed]

Yariv, A.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
[Crossref]

Appl. Phys. Lett. (1)

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 16101612 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. E. (1)

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E. 66, 046602 (2002).
[Crossref]

Phys. Rev. Lett. (9)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically-induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, “Composite band-gap solitons in nonlinear optically induced lattice,” Phys. Rev. Lett. 91, 153902 (2003).
[Crossref] [PubMed]

D. Mandelik, H. S. Eeisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[Crossref] [PubMed]

E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

W. P. Su, J. R. Schieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1968–1701 (1979).
[Crossref]

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83. 2726–2729 (1999).
[Crossref]

Phys. Status Solodi B (1)

A. S. Davydov and N. I. Kislukha, “Solitary excitation in one-dimensional molecular chains,” Phys. Status Solodi B 59, 465–470 (1973).
[Crossref]

Stud. Appl. Math. (1)

F. Fedele, J. Yang, and Z. Chen, “Properties of defect modes in one-dimensional optically induced photonic lattices,” Stud. Appl. Math. 115, 277–299 (2005).
[Crossref]

Other (1)

D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, nlin-ps/0405019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.1.
Fig.1.

Experimental setup: M1, M2, M3, mirrors; BS1, BS2, BS3, BS4, beam splitters; LN, LiNbO3: Fe crystal; CCD camera.

Fig. 2.
Fig. 2.

Forming process of an even symmetry staggered composite gap soliton: (a) probe beam and the interfering pattern of lattice-forming beams at the input face of the sample (b-d) intensity distribution of probe beam at the output face of the sample (b) t=0 (c) t=90 minutes (d) t=130 minutes (e) after the formation of the staggered composite gap soliton, the lattice’s pattern.

Fig. 3.
Fig. 3.

Forming process of an odd symmetry staggered composite gap soliton: (a) probe beam and the interfering pattern of lattice-forming beams at the input face of the sample (b-d) probe beam’s intensity distribution at the output face of the sample (b) t=0 (c) t=90 minutes (d) t=150 minutes (e) after the formation of the staggered composite gap soliton, the lattice’s pattern.

Fig. 4.
Fig. 4.

The staggered composite gap solitons and their corresponding interferograms: (a) the even symmetry composite gap soliton (b) interferogram of the even symmetry composite gap soliton (c) odd symmetry composite gap soliton (d) interferogram of the odd symmetry composite gap soliton.

Fig. 5.
Fig. 5.

Forming process of a staggered composite gap soliton when a dipole probe beam is at normal incidence: (a) probe beam and the lattice-forming beams’ interfering pattern at the input face of the sample (b-e) probe beam’s intensity distribution at the output face of the sample (b) t=0 (c) t=40 minutes (d) t=90 minutes (e) t=140 minutes.

Fig. 6.
Fig. 6.

Forming process of an odd symmetry in-phase composite gap soliton: (a) probe beam and the lattice-forming beams’ interfering pattern at the input face of the sample (b-e) probe beam’s intensity distribution at the output face of the sample (b) t=0 (c) t=30 minutes (d) t=120 minutes (e) t=220 minutes (f) after the formation of the composite gap soliton, the lattice’s pattern.

Fig. 7.
Fig. 7.

Forming process of an even symmetry in-phase composite gap soliton: (a) the probe beam and lattice-forming beams’ interfering pattern at the input face of the sample (b-e) probe beam’s intensity distribution of at the output face of the sample (b) t=0 (c) t=30 minutes (d) t=120 minutes (e) t=200 minutes (f) after the formation of the composite gap soliton, the lattice’s pattern.

Fig. 8.
Fig. 8.

The in-phase composite gap solitons and their corresponding interferograms: (a) the odd symmetry in-phase composite gap soliton (b) interferogram of the odd symmetry in-phase composite gap soliton (c) the even symmetry in-phase composite gap soliton (d) interferogram of the even symmetry in-phase composite gap soliton.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 2 n 3 r E SC = 1 2 n 3 r E p I I + I d ,

Metrics