Abstract

We report on highly efficient second, third and fourth harmonic generation from a femtosecond erbium-doped fiber source operating at 98 MHz repetition rate. By use of quasi-phase-matching in fan-out poled MgO:LiNbO3, we generate pulses at 770 nm, 520 nm and 390 nm, with corresponding average powers of 120 mW, 55 mW and 6 mW, respectively. Our device can be employed as a two-color source providing radiation from ultraviolet to near infrared.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, "Efficient frequency doubling of femtosecond fiber laser," Opt. Lett. 21, 1759-1781 (1996).
    [CrossRef] [PubMed]
  2. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Hanter, "Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate," Opt. Lett. 22, 13-15 (1997).
    [CrossRef] [PubMed]
  3. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Ferman, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett 22, 105-107 (1997).
    [CrossRef] [PubMed]
  4. K. Moutzouris, F. Adler F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multi-mW continuously tunable ultrashort visible pulses by frequency doubling a compact fiber source," Opt. Lett. (to be published).
    [PubMed]
  5. D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, and D. C. Hanna, "Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber : periodically poled lithium niobate source," Opt. Lett. 23, 162-164 (1998).
    [CrossRef]
  6. P. E. Britton, H. L. Offerhaus, D. J. Richardson, P. G. R. Smith, G. W. Ross and D. C. Hanna, "Parametric oscillator directly pumped by a 1.55 µm erbium-fiber laser," Opt. Lett. 24, 975-977 (1999).
    [CrossRef]
  7. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High power 100-fs pulse generation by frequency doubling of an erbium-ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998).
    [CrossRef]
  8. F. Adler, K. Moutzouris, A, Leitensorfer, H. Schnatz, B. Lipphardt, G. Grosche and F. Tauser, "Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurement of optical frequencies," Opt. Express 12, 5872-5880 (2004).
    [CrossRef] [PubMed]
  9. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  10. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, "Unidirectional ring resonator for selfstarting passively mode-locked lasers," Opt. Lett. 18, 220-222 (1993).
    [CrossRef] [PubMed]
  11. F. Tauser, A. Leitenstorfer, and W. Zinth, "Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope-phase evolution," Opt. Express 11, 594-600 (2003).
    [CrossRef] [PubMed]
  12. P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998).
    [CrossRef]
  13. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  14. S. M. Saltier, K. Koynov, B. Agate, and W. Sibbet, "Second harmonic generation with focused beams under conditions of large group velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004).
    [CrossRef]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol magnesium oxide doped lithium niobate," J. Opt. Soc. Am. B 14, 3319 (1997).
    [CrossRef]
  16. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyen, "Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source," Opt. Lett. 25, 1252-1254 (2000).
    [CrossRef]
  17. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3," Opt. Lett. 28, 935-937 (2003).
    [CrossRef] [PubMed]
  18. M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I. V. Kityk, "High-average-power femtosecond pulse generation in the blue using BiB3O6," Opt. Lett. 29, 2530-2532 (2004).
    [CrossRef] [PubMed]

2004 (3)

2003 (2)

2000 (1)

1999 (1)

1998 (3)

1997 (3)

1996 (1)

1995 (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

1993 (1)

Adler, F.

Agate, B.

Arbore, M. A.

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Ferman, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett 22, 105-107 (1997).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Hanter, "Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate," Opt. Lett. 22, 13-15 (1997).
[CrossRef] [PubMed]

Bisson, S. E.

Bosenberg, W. R.

Britton, P.

Britton, P. E.

Byer, R. L.

Champert, P. A.

Ebrahim-Zadeh, M.

Eckardt, R. C.

Fejer, M. M.

Ferman, M. E.

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Ferman, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett 22, 105-107 (1997).
[CrossRef] [PubMed]

Fermann, M. E.

Fleischer, S. B.

Fujimoto, J. G.

Galvanauskas, A.

Ghotbi, M.

Hanna, D. C.

Hanter, D.

Hariharan, A.

Harter, D.

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High power 100-fs pulse generation by frequency doubling of an erbium-ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Ferman, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett 22, 105-107 (1997).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, "Unidirectional ring resonator for selfstarting passively mode-locked lasers," Opt. Lett. 18, 220-222 (1993).
[CrossRef] [PubMed]

Hofer, M.

Ippen, E. P.

Jacobson, J.

Jundt, D.

Kityk, I. V.

Koynov, K.

Kulp, T. J.

Leitenstorfer, A.

Lenz, G.

Majchrowski, A.

Meyen, J. P.

Michalski, E.

Mizuuchi, K.

Morikawa, A.

Moutzouris, K.

Myers, L. E.

Nelson, L. E.

L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, "Efficient frequency doubling of femtosecond fiber laser," Opt. Lett. 21, 1759-1781 (1996).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Offerhaus, H. L.

Pierce, J. W.

Popov, S. V.

Powers, P. E.

Richardson, D. J.

Ross, G. W.

Saltier, S. M.

Sibbet, W.

Small, D. L.

Smith, P. G. R.

Sugita, T.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, "Unidirectional ring resonator for selfstarting passively mode-locked lasers," Opt. Lett. 18, 220-222 (1993).
[CrossRef] [PubMed]

Tauser, F.

Taverner, D.

Taylor, J. R.

Windeler, R. S.

Yamamoto, K.

Zelmon, D. E.

Zinth, W.

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett (1)

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Ferman, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett 22, 105-107 (1997).
[CrossRef] [PubMed]

Opt. Lett. (10)

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, "Unidirectional ring resonator for selfstarting passively mode-locked lasers," Opt. Lett. 18, 220-222 (1993).
[CrossRef] [PubMed]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3," Opt. Lett. 28, 935-937 (2003).
[CrossRef] [PubMed]

M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I. V. Kityk, "High-average-power femtosecond pulse generation in the blue using BiB3O6," Opt. Lett. 29, 2530-2532 (2004).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Hanter, "Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate," Opt. Lett. 22, 13-15 (1997).
[CrossRef] [PubMed]

P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998).
[CrossRef]

D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, and D. C. Hanna, "Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber : periodically poled lithium niobate source," Opt. Lett. 23, 162-164 (1998).
[CrossRef]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High power 100-fs pulse generation by frequency doubling of an erbium-ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998).
[CrossRef]

L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, "Efficient frequency doubling of femtosecond fiber laser," Opt. Lett. 21, 1759-1781 (1996).
[CrossRef] [PubMed]

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyen, "Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source," Opt. Lett. 25, 1252-1254 (2000).
[CrossRef]

P. E. Britton, H. L. Offerhaus, D. J. Richardson, P. G. R. Smith, G. W. Ross and D. C. Hanna, "Parametric oscillator directly pumped by a 1.55 µm erbium-fiber laser," Opt. Lett. 24, 975-977 (1999).
[CrossRef]

Other (1)

K. Moutzouris, F. Adler F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multi-mW continuously tunable ultrashort visible pulses by frequency doubling a compact fiber source," Opt. Lett. (to be published).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. WDM: Wavelength Division Multiplexer; λ/2 and λ/4: Half and Quarter Wave Plates; FI: Faraday Isolator; PBS: Polarising Beam Splitter; CL: Coupling Lens; M:TS: Mechanical Translation Stage; LN1,2,3: MgO:LiNbO3 crystals; f 1,2,3: input and output coupling lenses; M: Gold-coated mirrors

Fig. 2.
Fig. 2.

Typical spectra at the second harmonic, tunable in the 750 nm to 800 nm wavelength range. Spectral power is shown in absolute values.

Fig. 3.
Fig. 3.

(a) Scaling of the SHG power versus the fundamental power. Squares: Experimental data; Solid line: Quadratic fit, indicating gain saturation for pump powers exceeding ~150 mW. (b) FROG measurement for the second harmonic output indicating 142 fs chirp-free pulses. Black line: Temporal profile. Blue line: spectral phase.

Fig. 4.
Fig. 4.

Typical spectrum at the third harmonic; centered at 520 nm and exhibiting a FWHM width of 2.18 nm.

Fig. 5.
Fig. 5.

(a) Scaling of the third harmonic power as a function of the fundamental and the second harmonic power. (b) Typical autocorrelation trace for the third harmonic, indicating a pulse duration of 285 fs assuming sech2 shape.

Fig. 6.
Fig. 6.

Typical spectrum at the fourth harmonic centered at 390 nm

Tables (3)

Tables Icon

Table 1. Specifications of optical elements and nonlinear crystals

Tables Icon

Table 2. Group Velocity Mismatch (GVM) between different harmonics

Tables Icon

Table 3. Summary of device’s specifications

Metrics