Abstract

Frequency domain optical coherence tomography (FD-OCT) allows interferometer topologies with simplified system construction and handling. Problems of dispersion and polarization matching between the sample and reference arms, as well as beamsplitter spectral non-uniformity, are mitigated when the interferometer is wholly contained in the endoscope tip. A common path set-up, using a reference reflection originating from the inside surface of the glass envelope at the distal end of the endoscope, and an alternative approach with more efficient collection of the reference light using a novel beamsplitter design have been developed. High-speed (20,000 A-lines/s) ultrahigh axial resolution (2.4 μm) tomograms of mouse colon have been acquired using a 2 mm outer diameter endoscope in vivo. The FD-OCT system uses a compact mode-locked Ti:Al2O3 laser emitting a broad spectrum (160 nm full-width-half-maximum) centered at 800 nm in combination with a CCD based, spectrally sensitive detector.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. I. Feldchtein, J. Bush, G. Gelikonov, V. Gelikonov, and S. Piyevsky, "Cost effective, all-fiber autocorrelator based 1300 nm OCT system," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 5690, 349-355 (2005).
    [CrossRef]
  2. H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
    [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610
    [CrossRef] [PubMed]
  4. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  5. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. J. Kowalczyk, and J.S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404
    [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  7. T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
    [CrossRef]
  8. P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: improvement of signal-to-noise ratio," in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 3915, 55-59 (2000),
    [CrossRef]
  9. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889
    [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
    [CrossRef] [PubMed]
  11. J. F. deBoer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef]
  12. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography." Opt. Express 12, 2156-2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156
    [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-341 (1997).
    [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. deBoer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
    [CrossRef] [PubMed]
  15. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
    [CrossRef]
  16. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. deBoer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435
    [CrossRef] [PubMed]
  17. S. H. Yun, G. J. Tearney, J. F. deBoer, and B. E. Bouma, "Pulsed-source and swept source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5614
    [CrossRef] [PubMed]
  18. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003).
    [CrossRef] [PubMed]
  19. P. Koch, G. Huettmann, D. Boller, J. Weltzel, and E. Koch, "Ultra high resolution FDOCT system for dermatology," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 5690, 24-30 (2005).
    [CrossRef]
  20. J.K. Barton, D.B. Dal-Ponte, S.K. Williams, B. Ford, and M.R. Descour, "Imaging vascular implants with optical coherence tomography." in Coherence domain optical methods and optical coherence tomography in biomedicine IV, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 3915, 229-236 (2000).
    [CrossRef]
  21. P.R. Herz, Y. Chen, A.D. Aguirre, and J.G. Fujimoto, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography." Opt. Express 12, 3532-3542 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3532
    [CrossRef] [PubMed]
  22. J. A. Izatt, M. V. Sivak, A. M. Rollins, A. Hiroii, T. Hirata, and S. Lizuka "Optical imaging device," United States Patent 6,564,089 (13 May 2003).
  23. A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, "An achromatized endoscope for ultrahigh-resolution optical coherence tomography." in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc SPIE 5861, 586110 (2005).
    [CrossRef]
  24. U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
    [CrossRef]
  25. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28,2201-2201 (2003).
    [CrossRef] [PubMed]
  26. M. A. Choma, C. Yang, and J. A. Izatt,"Instantaneous quadrature low-coherence interferometry with 3*3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003).
    [CrossRef] [PubMed]
  27. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator." Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  28. M. A. Choma, A. K. Ellerbee, C. Yang, A. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30,1162-1164 (2005).
    [CrossRef] [PubMed]
  29. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
    [CrossRef]
  30. M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
    [CrossRef] [PubMed]
  31. T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1860
    [CrossRef] [PubMed]
  32. P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
    [CrossRef] [PubMed]

2005

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator." Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1860
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, A. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30,1162-1164 (2005).
[CrossRef] [PubMed]

2004

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography." Opt. Express 12, 2156-2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. J. Kowalczyk, and J.S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. deBoer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435
[CrossRef] [PubMed]

P.R. Herz, Y. Chen, A.D. Aguirre, and J.G. Fujimoto, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography." Opt. Express 12, 3532-3542 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3532
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. deBoer, and B. E. Bouma, "Pulsed-source and swept source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5614
[CrossRef] [PubMed]

2003

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889
[CrossRef] [PubMed]

J. F. deBoer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef]

M. A. Choma, C. Yang, and J. A. Izatt,"Instantaneous quadrature low-coherence interferometry with 3*3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28,2201-2201 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. deBoer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef] [PubMed]

A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003).
[CrossRef] [PubMed]

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef] [PubMed]

2001

2000

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

1999

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

1997

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Aguirre, A.D.

Bajraszewski, T.

Beddows, R.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

Besselson, D. G.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Boivin, P. B.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

Casaubieilh, P.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

Cense, B.

Chak, A.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Chen, Z.

Chinn, S. R.

Choma, M. A.

Creazzo, A. L.

de Boer, J. F.

deBoer, J. F.

Doetschman, T.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Drexler, W.

Duker, J.S.

El Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ellerbee, A. K.

Endo, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Fercher, A. F.

Ford, H. D.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

Fried, N. M.

U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
[CrossRef]

Fujimoto, J. G.

Fujimoto, J.G.

Godfrey, V. L.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Gorczynska, I.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

Hermann, B.

Herz, P.R.

Hillman, T.

Hitzenberger, C. K.

Iftimia, N.

Isenberg, G. A.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Itoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Izatt, J. A.

M. A. Choma, A. K. Ellerbee, C. Yang, A. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30,1162-1164 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt,"Instantaneous quadrature low-coherence interferometry with 3*3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003).
[CrossRef] [PubMed]

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kane, D. J.

Kang, J. U.

U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
[CrossRef]

Karamata, B.

Katada, C.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Ko, T. H.

Kobayashi, K.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Kowalczyk, A.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

Kowalczyk, A. J.

Lasser, T.

Le, T.

Leitgeb, R. A.

Makita, S.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Mitsui, T.

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Mutoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Nassif, N. A.

Nelson, J. S.

Park, B. H.

Peterson, K. A.

Pierce, M. C.

Pretlow, T. P.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Rollins, A. M.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Russel, R.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Sampson, D.

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef] [PubMed]

Saxer, C. E.

Sharma, U.

U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
[CrossRef]

Sivak, M. V.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Srinivasan, V. J.

Sticker, M.

Stingl, A.

Swanson, E. A.

Szkulmowska, A.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

Takahashi, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Targowski, P.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

Tatum, R. P.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

Tearney, G. J.

Ung-Runyawee, R.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Unterhuber, A.

Vakhtin, A. B.

Ward, J. M.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Washington, K.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Willis, J.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Wojtkowski, M.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. J. Kowalczyk, and J.S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404
[CrossRef] [PubMed]

Wong, R. C.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

Wood, W. R.

Yang, C.

Yang, K.

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Yasuno, Y.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Yatagai, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Yun, S. H.

Zawadzki, R.

Zhang, J.

Appl. Opt.

Appl. Phys. Lett.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004).
[CrossRef]

Gastroenterology

P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003).
[CrossRef] [PubMed]

Gastrointest. Endosc.

M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electronics.

U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005).
[CrossRef]

J. Mod. Opt.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005)
[CrossRef]

J. Phys. D: Appl. Phys.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. deBoer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography." Opt. Express 12, 2156-2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. J. Kowalczyk, and J.S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. deBoer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435
[CrossRef] [PubMed]

P.R. Herz, Y. Chen, A.D. Aguirre, and J.G. Fujimoto, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography." Opt. Express 12, 3532-3542 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3532
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. deBoer, and B. E. Bouma, "Pulsed-source and swept source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5614
[CrossRef] [PubMed]

T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1860
[CrossRef] [PubMed]

Opt. Express.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef] [PubMed]

Opt. Lett.

Other

F. I. Feldchtein, J. Bush, G. Gelikonov, V. Gelikonov, and S. Piyevsky, "Cost effective, all-fiber autocorrelator based 1300 nm OCT system," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 5690, 349-355 (2005).
[CrossRef]

P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: improvement of signal-to-noise ratio," in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 3915, 55-59 (2000),
[CrossRef]

P. Koch, G. Huettmann, D. Boller, J. Weltzel, and E. Koch, "Ultra high resolution FDOCT system for dermatology," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 5690, 24-30 (2005).
[CrossRef]

J.K. Barton, D.B. Dal-Ponte, S.K. Williams, B. Ford, and M.R. Descour, "Imaging vascular implants with optical coherence tomography." in Coherence domain optical methods and optical coherence tomography in biomedicine IV, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 3915, 229-236 (2000).
[CrossRef]

J. A. Izatt, M. V. Sivak, A. M. Rollins, A. Hiroii, T. Hirata, and S. Lizuka "Optical imaging device," United States Patent 6,564,089 (13 May 2003).

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, "An achromatized endoscope for ultrahigh-resolution optical coherence tomography." in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc SPIE 5861, 586110 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup utilizing common path interferometer topology. Spatially encoded FD-OCT is achieved using a broad bandwidth Ti:Al2O3 laser and a diffraction grating based spectrometer yielding 2.9 μm axial resolution at 20,000 A-lines/s. The reference reflection originates at the inside surface (REF) of the endoscope window, and is separated by the window thickness (100 μm) from the tissue.

Fig. 2.
Fig. 2.

The distally integrated micro beamsplitter allows improved backreflection and re-coupling from the reference arm. The combined beam path is shown in solid red while sample and reference paths are indicated by dashed lines. The beam splitter (BS) and reference mirror (RM) are indicated.

Fig. 3.
Fig. 3.

Theoretical sensitivity and dynamic range vs. beamsplitter transmission ratio in the Michelson arrangement. The lower line (green) indicates the sample reflectance that yields a signal to noise ratio of unity (max sensitivity = -100 dB), while the upper line (blue) indicates the largest sample reflectance that will not saturate the detector. The difference between the two lines is the dynamic range (68 dB) indicated by the arrow at the chosen beamsplitter ratio (0.1). The detector is saturated for beamsplitter transmission greater than 0.26.

Fig. 4.
Fig. 4.

Common path endoscopic UHR FD-OCT tomogram of human fingertip skin exhibits high stability and axial resolution (2.9 μm). Image features include: stratum corneum (SC), stratum granulosum (SG), stratum spinosum (SS), sweat duct (SD), the outer surface of endoscope window (O), and a faint double image (DBL) of stratum corneum using endoscope window outer surface as a reference. Inset graph shows axial point spread function detail.

Fig. 5.
Fig. 5.

Endoscopic UHR-OCT (reflectivity) tomogram (above) versus stained histologic (absorptive) crossection (lower right) of in vivo mouse colon with distally integrated beamplitter enables visualization of colonic mucosa (CM), muscular mucosa (MM), submucosa (SM), muscularis externa (ME), and serosa(S) layers. Contrast enhanced portion, using local histogram equalization (lower left) shows a surface layer of apical crypt cells (AC) as well as vertical structures in the mucosa that may correspond to crypt boundaries (C). Corresponding structures are marked in the age and strain matched histology image. Inset graph shows axial point spread function detail.

Metrics