Abstract

We report the first demonstration of a terahertz photomixer made of ion-irradiated In0.53Ga0.47As lattice-matched to InP and fiber-optic coupled with the drive lasers. A continuous-wave radiation is generated at frequencies up to 0.8 THz by photomixing two continuous-wave laser diodes around 1.55 μm. The measured 3dB-down bandwidth of 300 GHz yields a carrier lifetime of 0.53 ps, in agreement with the value of 0.41 ps measured in pump probe experiments. The detected signal is at the most 15 dB lower than the one obtained from similar photomixers fabricated from low-temperature-grown GaAs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).
  2. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
    [Crossref]
  3. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
    [Crossref]
  4. C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
    [Crossref] [PubMed]
  5. M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
    [Crossref]
  6. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
    [Crossref]
  7. J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).
  8. Y. C. Lim and R. A. Moor, “Properties of alternately charged coplanar parallel strips by conformal mappings,” Trans. Electron. Dev. 15, 173 (1968).
    [Crossref]
  9. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
  10. E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
    [Crossref]
  11. C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).
  12. E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
    [Crossref]
  13. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

2005 (2)

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

2004 (2)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

2003 (3)

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).

2002 (1)

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

1993 (2)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).

E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
[Crossref]

1968 (1)

Y. C. Lim and R. A. Moor, “Properties of alternately charged coplanar parallel strips by conformal mappings,” Trans. Electron. Dev. 15, 173 (1968).
[Crossref]

Arcott, S.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

Bjarnason, J. E.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

Bocquet, R.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

Brown, E. R.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).

E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
[Crossref]

Carmody, C.

C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).

Chan, T. L. J.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

Crozat, P.

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

Desplanque, L.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Driscoll, D.

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Driscoll, D. C.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Gossard, A. C.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Gregory, I. S.

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

Hanson, M.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Jagadish, C.

C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).

Joulaud, L.

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Lampert, M. A.

M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

Lampin, J. F.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Lee, A. W. M.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

Lim, Y. C.

Y. C. Lim and R. A. Moor, “Properties of alternately charged coplanar parallel strips by conformal mappings,” Trans. Electron. Dev. 15, 173 (1968).
[Crossref]

Linfield, E. H.

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

Lippens, D.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Lourtioz, J.-M.

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

Maker, P.

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Mangeney, J.

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

Mark, P.

M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

Masselin, P.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Matton, S.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).

E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
[Crossref]

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

Mollt, F.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Moor, R. A.

Y. C. Lim and R. A. Moor, “Properties of alternately charged coplanar parallel strips by conformal mappings,” Trans. Electron. Dev. 15, 173 (1968).
[Crossref]

Mouret, G.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Muller, R.

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Muller, R. E.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

Patriarche, G.

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

Peytavit, E.

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).

Sukhotin, M.

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

Tan, H. H.

C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

C. Baker, I. S. Gregory, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixer,” Opt. Express 13, 9639, (2005). http://www.opticsexpress.org/abstract.cfm?id=86252
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

M. Sukhotin, E. R. Brown, A. C. Gossard, D. Driscoll, M. Hanson, P. Maker, and R. Muller, “Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55μm,” Appl. Phys. Lett. 82, 3116 (2003).
[Crossref]

J. Mangeney, L. Joulaud, J.-M. Lourtioz, P. Crozat, and G. Patriarche, “Ultrafast response (~2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm,” Appl. Phys. Lett. 82, 856 (2003).

E. Peytavit, S. Arcott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollt, “Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector,” Appl. Phys. Lett. 81, 1174 (2002).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 41, 717 (2005).

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimetre-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Appl. Phys. Lett. 73, 1480 (1993).

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomiwing up to 3.8 THz in low-temperature GaAs,” Appl. Phys. Lett. 66, 285 (1995).
[Crossref]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tenability and 12 μW peak output,” Appl. Phys. Lett. 85, 3983 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high output InP-InGaAs unitravelling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).
[Crossref]

J. Appl. Phys. (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480 (1993).
[Crossref]

J. Appl. Phys. Lett. (1)

C. Carmody, H. H. Tan, and C. Jagadish, “Electrical isolation of n- and p-In0.53Ga0.47As epilayers using ion irradiation,” J. Appl. Phys. Lett. 94, 6616 (2003).

Opt. Express (1)

Trans. Electron. Dev. (1)

Y. C. Lim and R. A. Moor, “Properties of alternately charged coplanar parallel strips by conformal mappings,” Trans. Electron. Dev. 15, 173 (1968).
[Crossref]

Other (1)

M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Measured electrical characteristics of the irradiated-In0.53Ga0.47As photomixer. Triangles: dark current versus voltage. Full circles: device responsitivity at λ=1.55 μ m versus voltage for an incident optical power of 30 mW.

Fig. 2.
Fig. 2.

Bolometer output of ion-irradiated-In0.53Ga0.47As and LTG-GaAs photomixers measured versus the frequency difference between the two lasers. Two bias voltages are considered for the first photomixer: 1.2 volts (circles) and 1.7 volts (triangles). The total optical power incident on the photomixer is 30 mW. The LTG-GaAs photomixer (squares) is biased at 5 volts and the optical excitation power is 35 mW.

Fig. 3.
Fig. 3.

Left :Bolometer output measured at 0.5 THz versus the photomixer bias voltage for a fixed optical power of 30 mW. Right: Bolometer output measured at 0.5 THz versus the optical pump power at a 1.2 V photomixer bias voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = V b 2 G 0 2 1 2 [ 1 + ( ωτ ) 2 ] [ 1 + ( ω R A C ) 2 ]

Metrics