Abstract

Without using high speed RF feedback electronics, we successfully demonstrate a novel and economic long-term stabilization scheme for a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber soliton laser by controlling the cavity length to lock the deviation frequency at 25 kHz. The required deviation frequency between the cavity harmonic frequency and the modulation frequency can be directly obtained from the low frequency electronic sideband of the laser output. The same feedback control unit is also useable for higher modulation frequencies, because the suitable deviation frequency always remains within the range of 15~40 kHz.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa and E.  Yoshida, "A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE Photon. Technol. Lett. 12, 1613-1615 (2000).
    [CrossRef]
  2. E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
    [CrossRef]
  3. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition-rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
    [CrossRef]
  4. C. R. Doerr, H. A. Haus, and E. P. Ippen, "Asynchronous soliton mode locking," Opt. Lett. 19, 1958-1960 (1994).
    [CrossRef] [PubMed]
  5. H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
    [CrossRef]
  6. W.-W Hsiang, C.-Y Lin, M.-F Tien, and Y. Lai, "Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation," Opt. Lett. 30, 2493-2495 (2005).
    [CrossRef] [PubMed]
  7. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
    [CrossRef]
  8. S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schmidt-Langhorst, C. Schubert, H. G. Weber, "Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s," in Proceedings of European Conference on Optical Communication (Stockholm, Sweden, 2004), Th4.1.6.
  9. C. X. Yu, H. A. Haus, and E. P. Ippen, "Soliton squeezing at the gigahertz rate in a Sagnac loop," Opt. Lett. 26, 669-671 (2001).
    [CrossRef]
  10. X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
    [CrossRef]
  11. H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
    [CrossRef]
  12. M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
    [CrossRef]

2005 (1)

2001 (1)

2000 (3)

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition-rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
[CrossRef]

M. Nakazawa and E.  Yoshida, "A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE Photon. Technol. Lett. 12, 1613-1615 (2000).
[CrossRef]

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

1996 (2)

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
[CrossRef]

1995 (2)

H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
[CrossRef]

1994 (1)

1992 (1)

X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
[CrossRef]

Cleland, D.

X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
[CrossRef]

Doerr, C. R.

Ellis, A.

X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
[CrossRef]

Haus, H. A.

Hsiang, W.-W

Ippen, E. P.

Jones, D. J.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
[CrossRef]

Kawanishi, S.

H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
[CrossRef]

Kimura, Y.

E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
[CrossRef]

Kubota, H.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

Lai, Y.

Lin, C.-Y

Nakazawa, M.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

M. Nakazawa and E.  Yoshida, "A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE Photon. Technol. Lett. 12, 1613-1615 (2000).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
[CrossRef]

Sahara, A.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

Saruwatari, M.

H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
[CrossRef]

Shan, X.

X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
[CrossRef]

Suzuki, K.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

Sysoliatin, A.

Takara, H.

H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
[CrossRef]

Tien, M.-F

Wong, W. S.

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition-rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
[CrossRef]

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
[CrossRef]

Yamada, E.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

Yoshida, E.

M. Nakazawa and E.  Yoshida, "A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE Photon. Technol. Lett. 12, 1613-1615 (2000).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
[CrossRef]

Yu, C. X.

Electron. Lett. (4)

E. Yoshida, Y. Kimura, and M. Nakazawa, "20GHz, 1.8ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression," Electron. Lett. 31, 377-378 (1995).
[CrossRef]

X. Shan, D. Cleland and A. Ellis, "Stabilising Er fibre soliton laser with pulse phase locking," Electron. Lett. 28, 182-184 (1992).
[CrossRef]

H. Takara, S. Kawanishi, and M. Saruwatari, "Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component," Electron. Lett. 31, 292-293 (1995).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, "Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett. 32, 461-463 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Nakazawa and E.  Yoshida, "A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE Photon. Technol. Lett. 12, 1613-1615 (2000).
[CrossRef]

J. Lightwave Technol. (1)

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
[CrossRef]

Opt. Lett. (4)

Other (1)

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schmidt-Langhorst, C. Schubert, H. G. Weber, "Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s," in Proceedings of European Conference on Optical Communication (Stockholm, Sweden, 2004), Th4.1.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the mode-locked Er-fiber laser and the feedback control. BPF, band-pass filter; PD, photodiode; DSF, dispersion shift fiber.

Fig. 2.
Fig. 2.

Characteristics of the pulses from asynchronously mode-locked fiber laser. (a) Autocorrelation trace (black solid curve) and the fitting curve (red open circles), assuming a sech2 pulse shape. (inset , optical spectrum on a linear scale). (b) RF spectrum near 10 GHz with a span of 50 MHz; SMSR > 70 dB.

Fig. 3.
Fig. 3.

Frequency sidebands observed in the electronic frequency spectra. (a) 500 kHz span, near 10 GHz. (b) 90 kHz span, near DC.δf : deviation frequency.

Fig. 4.
Fig. 4.

Deviation frequency in the electronic frequency spectrum near DC after the low-pass filter and the amplifier in the feedback loop (inset, signal in the time domain).

Fig. 5.
Fig. 5.

Stabilization of the asynchronously mode-locked fiber laser. (a) Deviation frequency shift: without the stabilization scheme, green curve with the upper axis; with the stabilization scheme, blue curve with the lower axis. (b) 10 GHz pulse train from a fast sampling oscilloscope.

Metrics