Abstract

We describe the fabrication and characterization of omnidirectional reflectors based on silver-doped chalcogenide glass and polymer. We deposited periodically alternating layers of thermally evaporated Ge33As12Se55 chalcogenide glass, sputtered silver, and spun-cast polyamide-imide polymer. The silver was subsequently dissolved into each adjacent chalcogenide glass layer, either by exposing the multilayer to visible light (photodoping) or by heating the sample. The resultant silver concentration within the chalcogenide glass layers is estimated to be ~20 at. %. Silver doping red-shifts the band edge of the glass, and produces an increase of ~0.3–0.4 in the refractive index. The glass retains good transparency in the near infrared after doping, and the technique enables the omnidirectional bandwidth to be increased from ~100 nm to ~200 nm in the 1550 nm wavelength region.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
    [CrossRef]
  2. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  3. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999).
    [CrossRef]
  4. S.-H. Kim, and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Appl. Opt. 41, 3187-3192 (2002).
    [CrossRef] [PubMed]
  5. J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt. 2, 349-352 (2000).
    [CrossRef]
  6. S. Chao, T.-K. Wang, and J.-S. Chen, "Graphic method for numerical analysis of a periodically stratified thin-film omnidirectional reflector," Appl. Opt. 44, 3448-3453 (2005).
    [CrossRef] [PubMed]
  7. J.-Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, and E. F. Schubert, "Internal high-reflectivity omni-directional reflectors," Appl. Phys. Lett. 87, 031111-1-3 (2005).
    [CrossRef]
  8. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004).
    [CrossRef] [PubMed]
  9. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "On-chip Si-based Bragg cladding waveguide with high index contrast bilayers," Opt. Express 12, 4775-4780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775.
    [CrossRef] [PubMed]
  10. S.-S. Lo, M.-S. Wang, C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589.
    [CrossRef] [PubMed]
  11. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Modal analysis of Bragg onion resonators," Opt. Lett. 29, 424-426 (2004).
    [CrossRef] [PubMed]
  12. W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
    [CrossRef]
  13. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
    [CrossRef] [PubMed]
  14. A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
    [CrossRef]
  15. M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003).
    [CrossRef]
  16. K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
    [CrossRef]
  17. A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
    [CrossRef]
  18. Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
    [CrossRef]
  19. J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
    [CrossRef]
  20. T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
    [CrossRef]
  21. K. Ogusu, J. Yamasaki, and S. Maeda, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-267 (2004).
    [CrossRef] [PubMed]
  22. A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
    [CrossRef]
  23. C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
    [CrossRef] [PubMed]
  24. T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000).
    [CrossRef]
  25. T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
    [CrossRef]
  26. K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8634
    [CrossRef] [PubMed]
  27. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
    [CrossRef]
  28. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
    [CrossRef]
  29. "Torlon polyamide-imide design guide" (Solvay Advanced Polymers), http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG_2003.pdf.

2005

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

S. Chao, T.-K. Wang, and J.-S. Chen, "Graphic method for numerical analysis of a periodically stratified thin-film omnidirectional reflector," Appl. Opt. 44, 3448-3453 (2005).
[CrossRef] [PubMed]

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
[CrossRef] [PubMed]

K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8634
[CrossRef] [PubMed]

2004

2003

M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003).
[CrossRef]

2002

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

S.-H. Kim, and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Appl. Opt. 41, 3187-3192 (2002).
[CrossRef] [PubMed]

2000

J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt. 2, 349-352 (2000).
[CrossRef]

T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

1999

1998

J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

1995

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

1992

1991

A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

1988

Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
[CrossRef]

1981

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

1976

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Akiyama, S.

Barr, D.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Bermel, P.

Chao, S.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Chen, C.-C.

Chen, J.-S.

Chigrin, D. N.

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
[CrossRef] [PubMed]

Crane, W. S.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Dale, G.

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

DeCorby, R. G.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
[CrossRef] [PubMed]

Duan, X.

Dwivedi, P. K.

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Elliott, S. R.

A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Elshot, K.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Ewen, P. J. S.

T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
[CrossRef]

Fick, J.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Fink, Y.

J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fleming, J. G.

Frumar, M.

M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003).
[CrossRef]

Gaponenko, S. V.

Hadley, G. R.

Haugen, C. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Hosokawa, Y.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

Hwangbo, C. K.

Irwin, R.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Joannopoulos, J. D.

J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Kasap, S. O.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Kim, S.-H.

Kimerling, L. C.

Kitao, M.

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Kosa, T. I.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

Lamberti, V. E.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Lavrinenko, A. V.

Lekner, J.

J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt. 2, 349-352 (2000).
[CrossRef]

Li, H.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

Liang, W.

Liang, Y.-C.

Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
[CrossRef]

Lin, S.-Y.

Lin, W.

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

Lo, S.-S.

Maeda, S.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

K. Ogusu, J. Yamasaki, and S. Maeda, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-267 (2004).
[CrossRef] [PubMed]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

McMullin, J. N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Minakata, M.

K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8634
[CrossRef] [PubMed]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

Minikata, M.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

Mizushima, Y.

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Nagai, H.

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Nguyen, H. T.

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Nicholas, B.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Ochi, O.

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Ogusu, K.

K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8634
[CrossRef] [PubMed]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

K. Ogusu, J. Yamasaki, and S. Maeda, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-267 (2004).
[CrossRef] [PubMed]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

Owen, A. E.

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

Pai, M. M.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Perina, V.

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

Ponnampalam, N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Richardson, K. A.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Rivero, C.

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Slinger, C. W.

Suzuki, K.

Tada, K.

Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
[CrossRef]

Tai, K. L.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Vadimsky, R. G.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Venkatesan, T.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Wagner, A.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Wagner, T.

M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003).
[CrossRef]

T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

Wang, G. P.

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

Wang, M.-S.

Wang, T.-K.

Winn, J.

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Xu, Y.

Yamanaka, H.

Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
[CrossRef]

Yamasaki, J.

Yariv, A.

Yarotsky, D. A.

Yi, Y.

Yoshikawa, A.

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Zakery, A.

Zhang, S.

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

Adv. Phys.

A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976).
[CrossRef]

Curr. Opin. Solid State and Mater. Sci.

M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

J. Appl. Phys.

T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

J. Non-Cryst. Solids

T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000).
[CrossRef]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004).
[CrossRef]

J. Non-Cryst. Solids.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt. 2, 349-352 (2000).
[CrossRef]

J. Vac. Sci. Technol.

A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Mag. B.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995).
[CrossRef]

Science

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Thin Solid Films

Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988).
[CrossRef]

J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002).
[CrossRef]

Other

J.-Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, and E. F. Schubert, "Internal high-reflectivity omni-directional reflectors," Appl. Phys. Lett. 87, 031111-1-3 (2005).
[CrossRef]

"Torlon polyamide-imide design guide" (Solvay Advanced Polymers), http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG_2003.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic showing a PAI/IG2/silver layer structure, as deposited and after exposure to heat or light. The initially undissolved silver layers dissolve into adjacent IG2 layers upon exposure to heat or light, and form homogenously silver-doped IG2 layers (Ag:IG2). The layers are not to scale. The targeted layer thickness was ~290 nm for PAI layers, ~125 nm for IG2 layers, and ~20 nm for Ag layers. (b). Normal incidence spectrophotometer scans of sample B (see text) before light exposure (blue curve), and after light exposure (red curve). PAI layers were cured at 200°C in this case, and no significant change in transmission characteristics was observed after light exposure. Presumably, silver doping was thermally induced during the curing of the PAI layers. (c). Normal Incidence spectrophotometer scans of a sample created in a similar fashion to sample B, but with PAI layers cured at 90°C. The blue curve was taken before white light exposure, and the red curve after white light exposure. Prior to light exposure, the sample is essentially opaque due to the presence of un-reacted silver. After photodoping, the spectrum is that expected for a Bragg mirror.

Fig. 2.
Fig. 2.

Normal incidence digital camera picture of (a) sample A (silver-free) and (b) sample B (silver-containing), showing mirror finish of the omnidirectional reflectors. The color of the samples is due to their spectral reflection and absorption features as shown in Fig. 4 below, and described in the text. A reflected image of the digital camera appears in each case.

Fig. 3
Fig. 3

(a): SEM image of a facet of sample B after cleaving in liquid nitrogen. Good adhesion is evident with no evidence of film delamination or cracking. The overlaid ladder is a guide to the eye, with the distance between orange bars ~100 nm. (b). Normal incidence transmittance of sample A. The green curve is experimental data, and the yellow curve is a simulated curve based on a transfer matrix method and neglecting absorption. (c). Normal incidence spectrophotometer scans of sample B. The red curve is experimental data, and the blue curve is simulated assuming Δn=0.33. Sample B has a broader stopband, as is expected from the increased index of refraction of the Ag:IG2 layers as compared with standard IG2 glass.

Fig. 4.
Fig. 4.

(a). TM (left column) and TE (right column) reflectance curves for the silver-free sample A, for incidence angles of (from top to bottom) 0, 20, 34, 48, 62, and 76 degrees from normal. Red curves are experimental VASE data and blue curves were simulated based on a transfer matrix approach without absorption. See text for layer thicknesses used in simulation. The data agrees very well above the IG2 electronic absorption edge, although experimental data in the NIR stop bands is noisy due to the instability of the VASE light source in that region. An omnidirectional reflection band between ~1535 nm and ~1635 nm is indicated. (b). Same as (a), except for the silver-containing sample B. The Ag:IG2 layers were assumed to have Δn=0.40 in the simulations. The omnidirectional band in this case lies between ~1475 nm and ~1675 nm as indicated by the shading.

Metrics