Abstract

We present a light-by-light photonic crystal configuration consisting of a bent waveguide with three embedded Kerr-type nonlinear rods and a T-branch waveguide. We show that such a configuration can also demonstrate all-optical AND gate operation with extremely high contrast between the OFF state and the ON state in its transmission. The photonic crystal configuration of all-optical light-by-light switching is simple and thus facilitates the fabrication of practical all-optical devices and further large-scale optical integration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000).
    [CrossRef]
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
    [CrossRef]
  3. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  4. A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
    [CrossRef]
  5. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004), and references therein.
    [CrossRef]
  6. S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic-crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002).
    [CrossRef]
  7. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express 12, 161-167 (2003).
    [CrossRef]
  8. M. Notomi, A. Shinya, and S. Mitsugi, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  9. E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003).
    [CrossRef]
  10. M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64, 055603-055606 (2001).
    [CrossRef]
  11. T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107-125113 (2001).
    [CrossRef]
  12. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
    [CrossRef]

2005 (1)

2004 (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004), and references therein.
[CrossRef]

2003 (4)

F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express 12, 161-167 (2003).
[CrossRef]

E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

2002 (2)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic-crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

2001 (3)

M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64, 055603-055606 (2001).
[CrossRef]

T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107-125113 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

2000 (1)

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000).
[CrossRef]

Agio, M.

M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64, 055603-055606 (2001).
[CrossRef]

Blasco, J.

Centeno, E.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000).
[CrossRef]

Cowan, A. R.

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

Cuesta-Soto, F.

Fan, S.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Felbacq, D.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000).
[CrossRef]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

García, J.

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004), and references therein.
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Kivshar, Y. S.

Kosmidou, E. P.

E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

Marti, J.

Martínez, A.

Mingaleev, S. F.

Mitsugi, S.

Notomi, M.

Ochiai, T.

T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107-125113 (2001).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Ramos, F.

Sakoda, K.

T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107-125113 (2001).
[CrossRef]

Sanchis, P.

Shinya, A.

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004), and references therein.
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Soukoulis, C. M.

M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64, 055603-055606 (2001).
[CrossRef]

Tsiboukis, T. D.

E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Young, J. F.

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Mater. (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3, 211-219 (2004), and references therein.
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

Phys. Rev. B (3)

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000).
[CrossRef]

T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107-125113 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Phys. Rev. E (3)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002).
[CrossRef]

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64, 055603-055606 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of photonic crystal light-by-light switching with three embedded Kerr-type (red color) nonlinear rods.

Fig. 2.
Fig. 2.

Transmission as a function of the interference length L. PA and PB are the incident powers of waveguides A and B, respectively.

Fig. 3.
Fig. 3.

Field distributions and principle of light-by-light switching operation with interference length L = 10a. (a) One beam with a frequency of ω = 0.332(2πc / a) and a power level of 1.0P 0 is injected into the waveguide A. (b) One beam with a frequency of ω = 0.341(2πc / a) and a power level of 1.0P 0 is injected into the waveguide B. (c) Two beams are injected into the waveguides A and B at the same time.

Fig. 4.
Fig. 4.

Transmission as a function of the incident powers. PA and PB are the incident powers of waveguides A and B, respectively. (a) Incident signals with a frequency of 0.341(2πc / a) . (b) Incident signals with a frequency of 0.332(2πc / a) .

Fig. 5.
Fig. 5.

Time traces showing an AND gate operation. (a) Corresponding to the incident powers of waveguide A. (b) Corresponding to the incident powers of waveguide B. (c) Corresponding to the output powers from waveguide F.

Metrics