Abstract

We describe the application of cavity ring-down spectroscopy (CRDS) to the detection of trace levels of ethylene in ambient air in a cold storage room of a fruit packing facility over a several month period. We compare these results with those obtained using gas chromatography (GC), the current gold standard for trace ethylene measurements in post-harvest applications. The CRDS instrument provided real-time feedback to the facility, to optimize the types of fruit stored together, and the amount of room ventilation needed to maintain sub-10 ppb ethylene levels for kiwi fruit storage. Our CRDS instrument achieved a detection limit of two parts-per-billion volume (ppbv) in 4.4 minutes of measurement time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).
  2. D. A. Hunter, N. Lange, and M. S. Reid, "Physiology of Flower Senescence," L. Nooden, ed., in Cell Death in Plants. (2003) pp. 307-319.
  3. L. M. Mortensen, "Effect of ethylene on growth of greenhouse lettuce at different light and temperature levels," Scientia Horticulturae 39, 97-103 (1989).
    [CrossRef]
  4. S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
    [CrossRef]
  5. J. M. Dole and H. F. Wilkins, Floriculture principles and practices, (Prentice Hall, 1999), pp. 613.
  6. J. L. Gibson, B. E. Whipker, S. Blankenship, M. Boyette, T. Creswell, J. Miles, and M. Peet, "Ethylene: Sources, Symptoms, and Prevention for Greenhouse Crops," North Carolina State University College of Agriculture & Life Science, Dept. of Horticultural Science, Horticulture Information Leaflet 530, 7/2000.
  7. E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).
  8. J. Thompson, A. Kader, and K. Sulva, "Compatibility chart for fruits and vegetables in short-term transport or storage," University of California Division of Agriculture and Natural Resources, Publication 21560, http://postharvest.ucdavis.edu/Pubs/postthermo.shtml
  9. A. A. Kader, "A Perspective on postharvest Horticulture, (1978-2003)," HortScience 38, (August, 2003).
  10. J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).
  11. H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
    [CrossRef] [PubMed]
  12. H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
    [CrossRef]
  13. K. W. Busch and M. A. Busch, ed., Cavity ring-down Spectroscopy: an ultrarace-absroption measurement technique, (Oxford University Press, Washington, D.C., 1999).
    [CrossRef]
  14. B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
    [CrossRef]
  15. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
    [CrossRef]
  16. R. N. Zare, J. Xie, and B. A. Paldus, "Ring resonant cavities for spectroscopy," U. S. patent 5,912,740 (1999)

2003 (2)

A. A. Kader, "A Perspective on postharvest Horticulture, (1978-2003)," HortScience 38, (August, 2003).

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

2000 (2)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
[CrossRef] [PubMed]

1999 (1)

J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).

1996 (2)

H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
[CrossRef]

S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).

1993 (1)

S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
[CrossRef]

1989 (1)

L. M. Mortensen, "Effect of ethylene on growth of greenhouse lettuce at different light and temperature levels," Scientia Horticulturae 39, 97-103 (1989).
[CrossRef]

1977 (1)

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

Bailey, D. A.

S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
[CrossRef]

Blankenship, S. M.

S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).

S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
[CrossRef]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Crosson, E. R.

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Davos, C.

H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
[CrossRef] [PubMed]

De Vries, H. S. M.

H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
[CrossRef]

Fidric, B. G.

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Gorny, J. R.

J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Harren, F. J. M

H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
[CrossRef]

Kachanov, A. A

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Kader, A. A.

A. A. Kader, "A Perspective on postharvest Horticulture, (1978-2003)," HortScience 38, (August, 2003).

J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).

Kays, S.J.

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

Kemble, J.

S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).

Miller, J. E.

S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
[CrossRef]

Mortensen, L. M.

L. M. Mortensen, "Effect of ethylene on growth of greenhouse lettuce at different light and temperature levels," Scientia Horticulturae 39, 97-103 (1989).
[CrossRef]

Paldus, B. A.

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Pham-Tuan, H.

H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
[CrossRef] [PubMed]

Poenicke, E.F.

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

Provencal, R. A.

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Smittle, D.A.

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Tan, S. M.

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Vercammen, J.

H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
[CrossRef] [PubMed]

Wasono, M. A. J.

H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
[CrossRef]

Williamson, R.E.

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

Willke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

HortScience (1)

A. A. Kader, "A Perspective on postharvest Horticulture, (1978-2003)," HortScience 38, (August, 2003).

J. Amer. Soc. Hort. Sci. (1)

E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).

J. Chromatogr. A (1)

H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000).
[CrossRef] [PubMed]

J. Hort. Sci. (1)

S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).

Opt. Photon. News (1)

B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003).
[CrossRef]

Perishables Handling Quarterly (1)

J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).

Postharvest Biol Tech (1)

H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000).
[CrossRef]

Scientia Horticulturae (2)

L. M. Mortensen, "Effect of ethylene on growth of greenhouse lettuce at different light and temperature levels," Scientia Horticulturae 39, 97-103 (1989).
[CrossRef]

S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993).
[CrossRef]

Other (6)

J. M. Dole and H. F. Wilkins, Floriculture principles and practices, (Prentice Hall, 1999), pp. 613.

J. L. Gibson, B. E. Whipker, S. Blankenship, M. Boyette, T. Creswell, J. Miles, and M. Peet, "Ethylene: Sources, Symptoms, and Prevention for Greenhouse Crops," North Carolina State University College of Agriculture & Life Science, Dept. of Horticultural Science, Horticulture Information Leaflet 530, 7/2000.

D. A. Hunter, N. Lange, and M. S. Reid, "Physiology of Flower Senescence," L. Nooden, ed., in Cell Death in Plants. (2003) pp. 307-319.

J. Thompson, A. Kader, and K. Sulva, "Compatibility chart for fruits and vegetables in short-term transport or storage," University of California Division of Agriculture and Natural Resources, Publication 21560, http://postharvest.ucdavis.edu/Pubs/postthermo.shtml

R. N. Zare, J. Xie, and B. A. Paldus, "Ring resonant cavities for spectroscopy," U. S. patent 5,912,740 (1999)

K. W. Busch and M. A. Busch, ed., Cavity ring-down Spectroscopy: an ultrarace-absroption measurement technique, (Oxford University Press, Washington, D.C., 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic of cavity-ring down optical train, (b) exponential cavity ring-down decay curve and associated equation, where t 0 is the laser shut off time and τ is the ring-down decay constant, (c) spectral acquisition of ring-down waveforms as a function of wavelength, where the rate is proportional to absorption, and, (d) optical loss (1/cτ) spectrum as a function of wavelength covering an absorption feature.

Fig. 2.
Fig. 2.

Schematic diagram of a cavity ring-down optical engine using a three-mirror optical cavity and direct laser modulation.

Fig. 3.
Fig. 3.

Photograph of assembled and integrated cavity ring-down trace ethylene gas sensor.

Fig. 4.
Fig. 4.

(a) Target spectral region showing isolated lines of ethylene in the presence of carbon dioxide and, (b) pressure dependence of ethylene peak absorption and ethylene peak width.

Fig. 5.
Fig. 5.

Target spectrum of four different concentrations of ethylene.

Fig. 6.
Fig. 6.

Measurement of ethylene concentration (82.8 ppb) over 92 hours of sampling showing repeatability (precision) of 1.1 ppb.

Fig. 7.
Fig. 7.

Comparison of cavity ring-down and gas chromatography measurements of four standard concentrations of ethylene at UC Davis.

Fig. 8.
Fig. 8.

Comparison of cavity ring-down and gas samples analyzed by gas chromatography of ambient ethylene concentrations at the Selma packing facility.

Fig. 9.
Fig. 9.

Measured ethylene concentration in a kiwi fruit cold storage room at a packing facility in Selma, CA, over a period of 5 weeks. (a) Note the difference in ethylene levels prior to and post removal of Asian pears, on day 10, which were stored in the same room. The sharp changes in ethylene concentration are due to venting the room. (b) Shows 25 days of monitoring of the storage room containing only kiwi fruit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 τ = εlC + n ( 1 R ) + L T rt
C = [ 1 τ 1 τ 0 ] 1 εc

Metrics