Abstract

We analyze the propagating optical modes in a Silicon membrane photonic crystal waveguide, based on subwavelength-resolution amplitude and phase measurements of the optical fields using a heterodyne near-field scanning optical microscope (H-NSOM). Fourier analysis of the experimentally obtained optical amplitude and phase data permits identification of the propagating waveguide modes, including the direction of propagation (in contrast to intensity-only measurement techniques). This analysis reveals the presence of two superposed propagating modes in the waveguide. The characteristics of each mode are determined and found to be consistent with theoretical predictions within the limits of fabrication tolerances. An analysis of the relative amplitudes of these two modes as a function of wavelength show periodic oscillation with a period of approximately 3.3 nm. The coupling efficiency between the ridge waveguide and the photonic crystal waveguide is also estimated and found to be consistent with the internal propagating mode characteristics. The combination of high-sensitivity amplitude and phase measurements, subwavelength spatial resolution, and appropriate interpretive techniques permits the in-situ observation of the optical properties of the device with an unprecedented level of detail, and facilitates the characterization and optimization of nanostructure-based photonic devices and systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
    [CrossRef]
  2. D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
    [CrossRef]
  3. M. L. M. Balistreri H. Gersen, J. P. Korterik, L. Kuipers, N. F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001).
    [CrossRef] [PubMed]
  4. K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
    [CrossRef]
  5. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Muller, U. Gosele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29,174-176 (2004).
    [CrossRef] [PubMed]
  6. A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
    [CrossRef]
  7. A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
    [CrossRef]
  8. S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
    [CrossRef]
  9. I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
    [CrossRef]
  10. V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
    [CrossRef]
  11. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
    [CrossRef] [PubMed]
  12. A. Nesci, R. Dändliker, and H. P. Herzig, "Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope," Opt. Lett. 26,208-210 (2001).
    [CrossRef]
  13. S. I. Bozhevolnyi, and B. Vohnsen, "Near-field imaging of optical phase and its singularities," Opt. Commun. 212,217-223 (2002).
    [CrossRef]
  14. R. Engelen, Tim Karle, Henkjan Gersen, Jeroen Korterik, Thomas Krauss, Laurens Kuipers, Niek van Hulst, "Local probing of Bloch mode dispersion in a photonic crystal waveguide," Opt. Express,  13, 4457-4464 (2005).
    [CrossRef] [PubMed]
  15. E. Flück, M. Hammer, A.M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Amplitude and phase evolution of optical fields inside periodic photonic structures," J. Lightwave Technol. 21,1384-1393 (2003).
    [CrossRef]
  16. A. Nesci, and Y. Fainman, "Complex amplitude of an ultrashort pulse with femtosecond resolution in a waveguide using a coherent NSOM at 1550 nm," in Wave Optics and Photonic Devices for Optical Information Processing II, P. Ambs and F. R. Beyette, Jr., eds., Proc. SPIE 5181, 62-69 (2003).
    [CrossRef]
  17. J. C. Gates, C. W. J. Hillman, J. C. Baggett, K. Furusawa, T. M. Monro, and W. S. Brocklesby, "Structure and propagation of modes of large mode area holey fibers," Opt. Express 12, 847-852 (2004).
    [CrossRef] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef]
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
    [CrossRef]
  20. P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, U. Levy, M. Salt, H. P. Herzig and Y. Fainman, "Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 µm using heterodyne scanning near-field optical microscopy," Opt. Lett. 30, 2885-2887 (2005).
    [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  22. I. Märki, M. Salt, R. Stanley, U. Staufer, and H. P. Herzig, "Characterization of photonic crystal waveguides based on Fabry-Pérot interference," J. Appl. Phys. 96, 6966-6969 (2004).
    [CrossRef]

2005 (5)

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

R. Engelen, Tim Karle, Henkjan Gersen, Jeroen Korterik, Thomas Krauss, Laurens Kuipers, Niek van Hulst, "Local probing of Bloch mode dispersion in a photonic crystal waveguide," Opt. Express,  13, 4457-4464 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, U. Levy, M. Salt, H. P. Herzig and Y. Fainman, "Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 µm using heterodyne scanning near-field optical microscopy," Opt. Lett. 30, 2885-2887 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (4)

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
[CrossRef]

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

E. Flück, M. Hammer, A.M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Amplitude and phase evolution of optical fields inside periodic photonic structures," J. Lightwave Technol. 21,1384-1393 (2003).
[CrossRef]

2002 (2)

S. I. Bozhevolnyi, and B. Vohnsen, "Near-field imaging of optical phase and its singularities," Opt. Commun. 212,217-223 (2002).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

2001 (3)

2000 (2)

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

1984 (2)

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
[CrossRef]

Abashin, M.

Baggett, J. C.

Balistreri, M. L. M.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

Benson, O.

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
[CrossRef]

Birner, A.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

Boltasseva, A.

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Borel, P.I.

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
[CrossRef]

Bozhevolnyi, I.

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, and B. Vohnsen, "Near-field imaging of optical phase and its singularities," Opt. Commun. 212,217-223 (2002).
[CrossRef]

Brocklesby, W. S.

Dändliker, R.

Demmerer, S.

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

Denk, W.

D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
[CrossRef]

Engelen, R.

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

Fainman, Y.

Flück, E.

Frandsen, L. H.

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

Furusawa, K.

Gates, J. C.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

Gogna, P.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Gosele, U.

Gotzinger, S.

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

Hammer, M.

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Herzig, H. P.

Herzig, H. P.

Hillman, C. W. J.

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kafesaki, M.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

E. Flück, M. Hammer, A.M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Amplitude and phase evolution of optical fields inside periodic photonic structures," J. Lightwave Technol. 21,1384-1393 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

Kramper, P.

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

Kristensen, M.

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

E. Flück, M. Hammer, A.M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Amplitude and phase evolution of optical fields inside periodic photonic structures," J. Lightwave Technol. 21,1384-1393 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

Lanz, M.

D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
[CrossRef]

Levy, U.

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Loncar, M.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Märki, I.

Mlynek, J.

Monro, T. M.

Muller, F.

Murray, A.

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Nakagawa, W.

Nesci, A.

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
[CrossRef]

Okamoto, K.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Otter, A.M.

Pohl, D.W.

D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
[CrossRef]

Qiu, Y.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Salt, M.

Sandoghdar, V.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Muller, U. Gosele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29,174-176 (2004).
[CrossRef] [PubMed]

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

Scherer, A.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Søndergaard, T.

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Soukoulis, C. M.

Stanley, R.

I. Märki, M. Salt, R. Stanley, U. Staufer, and H. P. Herzig, "Characterization of photonic crystal waveguides based on Fabry-Pérot interference," J. Appl. Phys. 96, 6966-6969 (2004).
[CrossRef]

Staufer, U.

I. Märki, M. Salt, R. Stanley, U. Staufer, and H. P. Herzig, "Characterization of photonic crystal waveguides based on Fabry-Pérot interference," J. Appl. Phys. 96, 6966-6969 (2004).
[CrossRef]

Tortora, P.

Vaccaro, L.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

E. Flück, M. Hammer, A.M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Amplitude and phase evolution of optical fields inside periodic photonic structures," J. Lightwave Technol. 21,1384-1393 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

Vohnsen, B.

S. I. Bozhevolnyi, and B. Vohnsen, "Near-field imaging of optical phase and its singularities," Opt. Commun. 212,217-223 (2002).
[CrossRef]

Volkov, V.S.

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Wehrspohn, R. B.

Yoshie, T.

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

D.W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20,"Appl. Phys. Lett., 44, 651-653 (1984).
[CrossRef]

K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, "Near-field scanning optical microscopy of photonic crystal nanocavities," Appl. Phys. Lett. 82,1676-1678 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82,4596-4598 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83,5041-5043 (2003).
[CrossRef]

J. Appl. Phys. (1)

I. Märki, M. Salt, R. Stanley, U. Staufer, and H. P. Herzig, "Characterization of photonic crystal waveguides based on Fabry-Pérot interference," J. Appl. Phys. 96, 6966-6969 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Microscopy (1)

S. Gotzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe," J. Microscopy 202,117-121 (2000).
[CrossRef]

Opt. Commun. (1)

S. I. Bozhevolnyi, and B. Vohnsen, "Near-field imaging of optical phase and its singularities," Opt. Commun. 212,217-223 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

V.S. Volkov, I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85,294-297 (2000).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef]

Science (1)

M. L. M. Balistreri H. Gersen, J. P. Korterik, L. Kuipers, N. F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian and A. Murray, "Development of a 500 Å spatial resolution light microscope : I. light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Other (1)

A. Nesci, and Y. Fainman, "Complex amplitude of an ultrashort pulse with femtosecond resolution in a waveguide using a coherent NSOM at 1550 nm," in Wave Optics and Photonic Devices for Optical Information Processing II, P. Ambs and F. R. Beyette, Jr., eds., Proc. SPIE 5181, 62-69 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (465 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Description of the W1 PhC waveguide device: (a) optical micrograph showing the layout of the device, including the tapered waveguide and the W1 PhC waveguide. (b) Scanning electron micrograph (SEM) image of the region inside the dashed rectangle in (a). The W1 PhC waveguide is clearly observed.

Fig. 2.
Fig. 2.

Calculated dispersion diagram for TE-like guided modes in the photonic crystal waveguide. Solid black lines represent the guided defect modes: e1, e2, e3, and e4. The dark gray shaded regions show modes that can propagate through the crystal. The light line defines the boundary between the leaky and the propagating modes. The blue shaded region shows the approximate measurement region centered at the wavelength of 1.5 μm.

Fig. 3.
Fig. 3.

(465 KB) Movie showing instantaneous optical field at wavelength of 1560 nm propagating in the W1 PhC waveguide as calculated from the measured complex amplitude. Scanning range is 7 by 7 microns. [Media 1]

Fig. 4.
Fig. 4.

Images of measured amplitude and phase of the optical fields propagating in the W1 PhC waveguide at wavelengths of 1520 nm (a, b, respectively) and 1560 nm (c, d, respecitvely). Below the band edge (1520 nm) the propagating modes are not strongly confined to the waveguide channel, whereas modes within the bandgap of the PhC (1560 nm) demonstrate strong confinement of light in the waveguide channel (c) and planar phase fronts (d) in the waveguide region.

Fig. 5.
Fig. 5.

A sequence of amplitude and phase images of the guided modes in a W1 PhC waveguide measured for a sequence of wavelengths from 1556.6 nm to 1559.8 nm in increments of 0.4 nm. The images are obtained by scanning the H-NSOM tip over an area of 7×7 micrometers above the W1 PhC waveguide.

Fig. 6.
Fig. 6.

Spectral content of the optical field propagating in the z-direction when the guided optical field is excited in the W1 PhC waveguide at optical frequencies corresponding to (a) the dominant even mode at a wavelength of 1556.6 nm, and (b) superposition of even and odd modes at a wavelength of 1558.2 nm.

Fig. 7.
Fig. 7.

Spatial spectral content of the light propagating in the W1 PhC waveguide observed using H-NSOM: (a) λ=1556.6 nm; (b) λ=1558.2 nm.

Fig. 8:
Fig. 8:

Fourier spectrum amplitudes vs. excitation wavelength for the two forward-propagating modes observed in the W1 PhC waveguide.

Fig. 9.
Fig. 9.

Plane wave expansion simulation showing mode patterns within the PhC waveguide. The modes were calculated using an approximate supercell-based model of the ideal structure. The two lowest-order eigenmodes are shown: (a) even mode e1 ; (b) odd mode e2 .

Fig. 10.
Fig. 10.

Finite integral time domain simulations showing the propagation of: (a) even mode, (b) odd mode and (c) superposition of the even and the odd mode.

Fig. 11.
Fig. 11.

Near-field amplitude measurement in the area of the input coupling interface between the ridge and the W1 PhC waveguides for wavelength 1553.5 nm. The dotted line indicated the interface between the ridge waveguide (below the line) and the photonic crystal waveguide (above the line).

Fig. 12.
Fig. 12.

Aggregate intensity (integrated across the waveguide channel width) along the propagation direction for the distribution shown in Fig. 11. The horizontal lines correspond to an average value of integrated intensity for the ridge waveguide (left) and the PhC waveguide (right).

Fig. 13.
Fig. 13.

Experimentally obtained values for coupling loss at the coupling interface between the ridge and the W1 PhC waveguides for different input wavelengths.

Metrics