Abstract

A two-dimensional photonic crystal (PhC) super-prism integrated with one-dimensional photonic crystal microcavity filters has been designed using the plane wave expansion (PWE) and 2-D Finite Difference Time Domain (FDTD) methods based on Silicon-on-Insulator (SOI) technology. The super-prism operates as a coarse spatial filter with an average response bandwidth of 60 nm, while the 1-D PhC microcavity filters operate as narrow band-pass transmission filters with an average filter response line-width of 10 nm. This work demonstrates the simultaneous operation of two photonic devices for de-multiplexing applications on a single platform that could be useful in future Photonic Crystal Integrated Circuits (PCICs).

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism

Damien Bernier, Xavier Le Roux, Anatole Lupu, Delphine Marris-Morini, Laurent Vivien, and Eric Cassan
Opt. Express 16(22) 17209-17214 (2008)

Discontinuous wavelength super-refraction in photonic crystal superprism

Anatole Lupu, André de Lustrac, Abdelwaheb Ourir, Xavier Checoury, Jean-Michel Lourtioz, Emmanuel Centeno, David Cassagne, Jean-Paul Albert, Frederic Pommereau, Lionel Legouezigou, Olivier Drisse, Odile Legouezigou, Estelle Deroin, and Guang-Hua Duan
Opt. Express 14(5) 2003-2013 (2006)

Observation of surface states in a truncated photonic crystal slab

Yurii A. Vlasov, Nikolaj Moll, and Sharee J. McNab
Opt. Lett. 29(18) 2175-2177 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,”, Opt. Lett. 21, 1771–1773 (1996)
    [Crossref] [PubMed]
  2. H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
    [Crossref]
  3. B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003)
    [Crossref]
  4. L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)
  5. L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561–566 (2003)
    [Crossref]
  6. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)
  7. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004)
    [Crossref] [PubMed]
  8. T. Matsumoto and T. Baba, “Photonic Crystal k-Vector Superprism,” J. Lightwave Technol. 22, 917–922 (2004)
    [Crossref]
  9. B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
    [Crossref] [PubMed]
  10. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001)
    [Crossref]
  11. L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
    [Crossref]
  12. A. S. Jugessur, P. Pottier, and R. M. De La Rue, “One dimensional periodic photonic crystals microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–368 (2003)
    [Crossref]
  13. A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystals microcavity filters,” Opt. Express 12, 1304–1312 (2004)
    [Crossref] [PubMed]
  14. T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J.Appl. Phys. 40, 5920–5924 (2001)
    [Crossref]
  15. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
    [Crossref]

2005 (1)

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

2004 (4)

2003 (4)

B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
[Crossref] [PubMed]

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003)
[Crossref]

L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561–566 (2003)
[Crossref]

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “One dimensional periodic photonic crystals microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–368 (2003)
[Crossref]

2002 (1)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

2001 (2)

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001)
[Crossref]

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J.Appl. Phys. 40, 5920–5924 (2001)
[Crossref]

1998 (1)

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

1996 (1)

Adibi, A.

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003)
[Crossref]

Asano, T.

B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
[Crossref] [PubMed]

Baba, T.

T. Matsumoto and T. Baba, “Photonic Crystal k-Vector Superprism,” J. Lightwave Technol. 22, 917–922 (2004)
[Crossref]

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J.Appl. Phys. 40, 5920–5924 (2001)
[Crossref]

Baehr-Jones, T.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
[Crossref]

Gallet, J. -F.

L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)

Gallet, J.-F.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004)
[Crossref] [PubMed]

Hietala, V. M.

Hochberg, M.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
[Crossref]

Hosaka, H.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Jones, E. D.

Jugessur, A.

Jugessur, A. S.

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystals microcavity filters,” Opt. Express 12, 1304–1312 (2004)
[Crossref] [PubMed]

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “One dimensional periodic photonic crystals microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–368 (2003)
[Crossref]

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

Kawakami, S.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Kawashima, T.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Krauss, T. F.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004)
[Crossref] [PubMed]

L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561–566 (2003)
[Crossref]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)

Lin, S. Y.

Matsumoto, T.

Mazilu, M.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004)
[Crossref] [PubMed]

L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561–566 (2003)
[Crossref]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)

Momeni, B.

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003)
[Crossref]

Noda, S.

B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
[Crossref] [PubMed]

Notomi, M.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Ohsaki, D.

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J.Appl. Phys. 40, 5920–5924 (2001)
[Crossref]

Pottier, P.

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystals microcavity filters,” Opt. Express 12, 1304–1312 (2004)
[Crossref] [PubMed]

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “One dimensional periodic photonic crystals microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–368 (2003)
[Crossref]

Prather, D. W.

Rue, R. M. De La

Sato, T.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Scherer, A.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
[Crossref]

Sharkawy, A.

Shi, S.

Song, B.

B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
[Crossref] [PubMed]

Tamamura, T.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Tomita, A.

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Wang, L.

Witzens, J.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
[Crossref]

Wu, L.

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004)
[Crossref] [PubMed]

L. Wu, M. Mazilu, and T. F. Krauss, “Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator,” J. Lightwave Technol. 21, 561–566 (2003)
[Crossref]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)

Appl. Opt. (1)

Appl. Phys Lett. (1)

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, “Dual lattice photonic-crystal beam splitters,” Appl. Phys Lett. 86, 211106 (2005)
[Crossref]

Appl. Phys. B (1)

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003)
[Crossref]

Electron. Lett. (1)

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “One dimensional periodic photonic crystals microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–368 (2003)
[Crossref]

IEEE J. Quantum Opt. (1)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism Phenomena in Planar Photonic Crystals,” IEEE J. Quantum Opt. 38, 915–918 (2002)

J. Lightwave Technol. (2)

Jpn. J.Appl. Phys. (1)

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J.Appl. Phys. 40, 5920–5924 (2001)
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)
[Crossref]

Phys. Rev. E (1)

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode-matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609-1-12 (2004)
[Crossref]

Science (1)

B. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-plane Hetero Photonic Crystals,” Science 300, 1537 (2003)
[Crossref] [PubMed]

Other (1)

L. Wu, M. Mazilu, J. -F. Gallet, and T. F. Krauss, “Square lattice photonic-crystal collimator,” Photonics and Nanostructures ‒ Fundamentals and Applications, 31–36 (2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic (not to scale) of the combined photonic system of a 2-D PhC super-prism integrated with 1-D PhC filters.

Fig. 2.
Fig. 2.

The band edge map of the slab 2-D photonic crystal based on 3-D modelling and the best fit 2-D model.

Fig. 3.
Fig. 3.

Normalized equi-frequency band diagram near the band edge at the wavelength of interest (nz kz /k 0 and nx kx /k 0) (a) without rotation (b) with a rotation of 28°.

Fig. 4.
Fig. 4.

Steering angle versus wavelength based on 2-D best fit model when the PhC structure is rotated by 28°.

Fig. 5.
Fig. 5.

The beam deviation angle versus input waveguide width, using 2-D FDTD modelling, based on a 2-D best fit.

Fig. 6.
Fig. 6.

Transmission spectra of the 2-D PhC super-prism at the output waveguides.

Fig. 7.
Fig. 7.

Transmission band gap of a 1-D PhC filter showing a peak resonance at 1360 nm with a schematic of the device in the inset.

Fig. 8.
Fig. 8.

Transmission spectra of the combined photonic system of super-prism and filter.

Tables (1)

Tables Icon

Table 1. Parameters of 1-D PhC filters designed for specific wavelengths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( n slab , n hole ) = λ 1 λ 2 [ n x 2 D ( λ , n slab , n hole ) n x 3 D ( λ ) ] 2
n x 2 D ( λ , n slab , n hole ) = effective index at band-edge of 2-D model
n x 3 D ( λ ) = effective index at band-edge of 3-D model
n slab = 2.85 and n hole = 1.94
θ 1 ( min ) = tan 1 ( 1.2 2.51 ) 25 °
θ 1 = tan 1 ( 1.2 x 1.1 2.52 ) 28 °

Metrics