Abstract

A Black Box Model for the quick complete characterization of the optical gain and amplified spontaneous emission noise in Semiconductor Optical Amplifiers is presented and verified experimentally. This model provides good accuracy, even neglecting third order terms in the spectral gain shift, and can provide cost reduction in SOA characterization and design as well as provide simple algorithms for hybrid integration in-package control.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rieznik et al., "Spectral functional forms for modeling SOAs noise," Proceedings of the SBM O/IEEE MTT-S International Microwave and Optoelectronics Conference 2005 (Brasília, DF, Brazil).
  2. K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Opt. Quantum Electron. 6, 1428-1435 (2000).
    [CrossRef]
  3. E. Conforti, C.M. Gallep, A.C. Bordonalli, "Decreasing Electro-Optic Switching Time in Semiconductor Optical Amplifiers by Using Pre-Pulse Induced Chirp Filtering," Optical Ampl. Applications 2003 TOPS, J. Mørk, and A. Srivastava ed.. (OSA Publications) 92, 111-116 (2003).
  4. J. Leuthold et al., "Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration," IEEE Phontonics Technol. Lett. 13, 860-862 (2001).
    [CrossRef]
  5. N. C. Frateschi et al., "Uncooled Performance of 10-Gb/s Laser Modules With InGaAlAs-InP and InGaAsP-InP MQW Electroabsorption Modulators Integrated With Semiconductor Amplifiers," IEEE Phontonics Technol. Lett. 17, 1378-1380 (2005).
    [CrossRef]
  6. C.Y. Tsai et al., "Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductors lasers," IEEE J. Sel. Top. Quantum Electron. 5, 596-605 (1999).
    [CrossRef]
  7. C. M. Gallep and E. Conforti, "Reduction of Semiconductor Optical Amplifier Switching Times by Pre-Impulse-Step Injected Current Technique," IEEE Photon. Technol. Lett. 14, 902 -904 (2002).
    [CrossRef]
  8. C. M. Gallep and E. Conforti, "Simulations on picosecond nonlinear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model," Opt. Commun. 236, 131-139 (2004).
    [CrossRef]
  9. A.A. Rieznik et al., "Black Box Model for Thulium Doped Fiber Amplifiers," Proc. of the Optical Fibers Conference 2003 (Atlanta, Georgia, USA), 627-628.
  10. E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
    [CrossRef]

2005 (1)

N. C. Frateschi et al., "Uncooled Performance of 10-Gb/s Laser Modules With InGaAlAs-InP and InGaAsP-InP MQW Electroabsorption Modulators Integrated With Semiconductor Amplifiers," IEEE Phontonics Technol. Lett. 17, 1378-1380 (2005).
[CrossRef]

2004 (1)

C. M. Gallep and E. Conforti, "Simulations on picosecond nonlinear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model," Opt. Commun. 236, 131-139 (2004).
[CrossRef]

2002 (2)

E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
[CrossRef]

C. M. Gallep and E. Conforti, "Reduction of Semiconductor Optical Amplifier Switching Times by Pre-Impulse-Step Injected Current Technique," IEEE Photon. Technol. Lett. 14, 902 -904 (2002).
[CrossRef]

2001 (1)

J. Leuthold et al., "Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration," IEEE Phontonics Technol. Lett. 13, 860-862 (2001).
[CrossRef]

2000 (1)

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Opt. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

1999 (1)

C.Y. Tsai et al., "Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductors lasers," IEEE J. Sel. Top. Quantum Electron. 5, 596-605 (1999).
[CrossRef]

Conforti, E.

C. M. Gallep and E. Conforti, "Simulations on picosecond nonlinear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model," Opt. Commun. 236, 131-139 (2004).
[CrossRef]

C. M. Gallep and E. Conforti, "Reduction of Semiconductor Optical Amplifier Switching Times by Pre-Impulse-Step Injected Current Technique," IEEE Photon. Technol. Lett. 14, 902 -904 (2002).
[CrossRef]

Frateschi, N. C.

N. C. Frateschi et al., "Uncooled Performance of 10-Gb/s Laser Modules With InGaAlAs-InP and InGaAsP-InP MQW Electroabsorption Modulators Integrated With Semiconductor Amplifiers," IEEE Phontonics Technol. Lett. 17, 1378-1380 (2005).
[CrossRef]

Gallep, C. M.

C. M. Gallep and E. Conforti, "Simulations on picosecond nonlinear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model," Opt. Commun. 236, 131-139 (2004).
[CrossRef]

C. M. Gallep and E. Conforti, "Reduction of Semiconductor Optical Amplifier Switching Times by Pre-Impulse-Step Injected Current Technique," IEEE Photon. Technol. Lett. 14, 902 -904 (2002).
[CrossRef]

Jacobsen, G.

E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
[CrossRef]

Leuthold, J.

J. Leuthold et al., "Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration," IEEE Phontonics Technol. Lett. 13, 860-862 (2001).
[CrossRef]

Person, U.

E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
[CrossRef]

Stubkjaer, K.

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Opt. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

Tsai, C.Y.

C.Y. Tsai et al., "Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductors lasers," IEEE J. Sel. Top. Quantum Electron. 5, 596-605 (1999).
[CrossRef]

Vanin, E. V.

E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

E. V. Vanin, U. Person, and G. Jacobsen, "Spectral Functional forms for Gain and Noise Characterization of EDFAs," IEEE J. Lightwave Technol. 20, 243-249 (2002).
[CrossRef]

IEEE J. Sel. Opt. Quantum Electron. (1)

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Opt. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C.Y. Tsai et al., "Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductors lasers," IEEE J. Sel. Top. Quantum Electron. 5, 596-605 (1999).
[CrossRef]

IEEE Phontonics Technol. Lett. (2)

J. Leuthold et al., "Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration," IEEE Phontonics Technol. Lett. 13, 860-862 (2001).
[CrossRef]

N. C. Frateschi et al., "Uncooled Performance of 10-Gb/s Laser Modules With InGaAlAs-InP and InGaAsP-InP MQW Electroabsorption Modulators Integrated With Semiconductor Amplifiers," IEEE Phontonics Technol. Lett. 17, 1378-1380 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. M. Gallep and E. Conforti, "Reduction of Semiconductor Optical Amplifier Switching Times by Pre-Impulse-Step Injected Current Technique," IEEE Photon. Technol. Lett. 14, 902 -904 (2002).
[CrossRef]

Opt. Commun. (1)

C. M. Gallep and E. Conforti, "Simulations on picosecond nonlinear electro-optic switching using an ASE-calibrated semiconductor optical amplifier model," Opt. Commun. 236, 131-139 (2004).
[CrossRef]

Other (3)

A.A. Rieznik et al., "Black Box Model for Thulium Doped Fiber Amplifiers," Proc. of the Optical Fibers Conference 2003 (Atlanta, Georgia, USA), 627-628.

E. Conforti, C.M. Gallep, A.C. Bordonalli, "Decreasing Electro-Optic Switching Time in Semiconductor Optical Amplifiers by Using Pre-Pulse Induced Chirp Filtering," Optical Ampl. Applications 2003 TOPS, J. Mørk, and A. Srivastava ed.. (OSA Publications) 92, 111-116 (2003).

A. Rieznik et al., "Spectral functional forms for modeling SOAs noise," Proceedings of the SBM O/IEEE MTT-S International Microwave and Optoelectronics Conference 2005 (Brasília, DF, Brazil).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SOA ASE power spectra for eight bias current levels: a) experimental data and b) BBM method numerical results.

Fig. 2.
Fig. 2.

Relative error between experimental and BBM predicted ASE data, for the eight SOA bias levels.

Fig. 3.
Fig. 3.

SOA optical gain spectra for eight bias current levels: (a) experimental and (b) predicted by BBM.

Fig. 4.
Fig. 4.

Relative error between experimental and calculated SOA optical gain spectra data, for the eight bias current levels.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d G ( λ ) = Γ [ a 1 ( N N tr ) a 2 ( λ λ sh ) 2 + a 3 ( λ λ sh ) 3 ]
G ( λ ) = Γ [ a 1 ( N N tr ) a 2 ( λ λ sh ) 2 + a 3 ( λ λ sh ) 3 ]
G ( λ ) = R ( λ ) N + S ( λ ) N 2 + T ( λ ) N 3 + W ( λ )
G ( λ ) = F 1 ( λ , λ 1 , λ 2 ) G ( λ 1 ) + F 2 ( λ , λ 1 , λ 2 ) G ( λ 2 ) + F 3 ( λ , λ 1 , λ 2 )
( G A ( λ 1 ) G A ( λ 2 ) 1 G B ( λ 1 ) G B ( λ 2 ) 1 G C ( λ 1 ) G C ( λ 2 ) 1 ) ( F 1 ( λ , λ 1 , λ 2 ) F 2 ( λ , λ 1 , λ 2 ) F 3 ( λ , λ 1 , λ 2 ) ) = ( G A ( λ ) G B ( λ ) G C ( λ ) )
ASE L ( λ ) = N sp ( λ ) B ( G L ( λ ) 1 ) N sp ( λ ) B G L ( λ )
ASE ( λ ) = Seq dBm ( λ ) + G ( λ ) = Seq dBm ( λ ) + R ( λ ) N + S ( λ ) N 2 + W ( λ )
ASE ( λ ) = F 1 ASE ( λ , λ 1 , λ 2 ) ASE ( λ 1 ) + F 2 ASE ( λ , λ 1 , λ 2 ) ASE ( λ 2 ) + F 3 ASE ( λ , λ 1 , λ 2 )

Metrics