Abstract

We report smooth and broad continuum generation using a compact femtosecond Ti:Sapphire laser as a pump source and a tapered photonic crystal fibre as a nonlinear element. Spectral output is optimised for use in optical coherence tomography, providing a maximum longitudinal resolution of 1.5 μm in free space at 809 nm centre wavelength without use of additional spectral filtering.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  3. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B,  19, 2148-2155 (2002).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610, (2001).
    [CrossRef]
  5. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  7. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
    [CrossRef] [PubMed]
  8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]
  9. Y. Wang, I. Tomov, J. Stuart. Nelson, Z. Chen, H. Lim, F. Wise, "Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography," J. Opt. Soc. Am. A,  22, 1492-1499 (2005).
    [CrossRef]
  10. S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. A. Birks, W. Wadsworth, U. Bünting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
    [CrossRef] [PubMed]
  11. T. A. Birks, J. C. Knight, P. St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  12. K. Saitoh, M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-267
    [CrossRef] [PubMed]
  13. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002).
    [CrossRef]
  14. G.P. Agrawal, Nonlinear fiber optics, (Academic Press, 2nd edition, 1995).
  15. T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864
    [CrossRef] [PubMed]
  17. F. Lu, Y. Deng, and W. D. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
    [CrossRef] [PubMed]
  18. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. K. Hitzenberger, D. Stifter, "En-face scanning optical coherence tomography with ultra-high resolution for material investigation," Opt. Express 13, 1015-1024 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1015
    [CrossRef] [PubMed]
  19. C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753
    [CrossRef] [PubMed]
  20. Y. Wang, J. Stuart Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411
    [CrossRef] [PubMed]

2005

2004

2003

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
[CrossRef] [PubMed]

Y. Wang, J. Stuart Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753
[CrossRef] [PubMed]

S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. A. Birks, W. Wadsworth, U. Bünting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

2002

2001

2000

1997

1992

Aguirre, A.

Ahrens, G.

Apolonski, A.

Bauer, S.

Birks, T. A.

Bizheva, K.

Boppart, S. A.

Bourquin, S.

Bünting, U.

Chen, Z.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Drexler, W.

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Engelke, R.

Fercher, A. F.

Fujimoto, J.

Fujimoto, J. G.

Ghanta, R. K.

Götzinger, E.

Grützner, G.

Hartl, I.

Hee, M. R.

Hermann, B.

Hitzenberger, C. K.

Hoelzenbein, T.

Holzwarth, R.

Hsiung, P.

Huang, D.

Knight, J. C.

Knox, W. D.

Ko, T.

Ko, T. H.

Kopf, D.

Koshiba, M.

Leon-Saval, S. G.

Li, X. D.

Li, Y. W.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Lin, C. P.

Lo, P.

Lu, F.

Marks, D. L.

Martin Man, T.-P.

Mason, M. W.

Mei, M.

Nelson, J. S.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Oldenburg, A. L.

Ortigosa-Blanch, A.

Pehamberger, H.

Pircher, M.

Povazay, B.

Puliafito, C. A.

Ranka, J. K.

Reynolds, J. J.

Russell, P. St. J.

Russell, P. St.J.

Saitoh, K.

Sattmann, H.

Scherzer, E.

St, P.

Stentz, A. J.

Stifter, D.

Swanson, E. A.

Tomov, I.

Trost, P.

Unterhuber, A.

Vetterlein, M.

Wacheck, V.

Wadsworth, W.

Wadsworth, W. J.

Wang, Y.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Wiesauer, K.

Windeler, R. S.

Zhao, Y.

Zhou, Q.

IEEE J. Lightwave Technol.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Y. Wang, J. Stuart Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753
[CrossRef] [PubMed]

S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. A. Birks, W. Wadsworth, U. Bünting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-267
[CrossRef] [PubMed]

K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. K. Hitzenberger, D. Stifter, "En-face scanning optical coherence tomography with ultra-high resolution for material investigation," Opt. Express 13, 1015-1024 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1015
[CrossRef] [PubMed]

Opt. Lett.

F. Lu, Y. Deng, and W. D. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, P. St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610, (2001).
[CrossRef]

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Other

G.P. Agrawal, Nonlinear fiber optics, (Academic Press, 2nd edition, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Scanning electron microscope “SEM” image of the photonic crystal fibre used. (b) Simulated dispersion curves of the periodic pattern of small holes from this fibre, with different periodicities (ʌ) and fibre diameters (D).

Fig. 2.
Fig. 2.

Measured laser output spectrum (red curve in linear scale) and output spectrum from 1-meter length of the PCF-used (bold and thin black curves respectively for linear and logarithmic scales).

Fig. 3.
Fig. 3.

Measured SC spectra from 1 m length of the PCF (a); at the fibre input a taper is added with a waist diameter of 80 μm (b), 70 μm (c), 60 μm (d), 50 μm (e) and of 40 μm (f). In each plot, the simulated dispersion curve associated with the taper waist diameter is given in blue.

Fig. 4.
Fig. 4.

(a) Normalized output spectrum of the widest SC generated from a PCF taper with a waist diameter of 40 μm. Simulated dispersion curve of the taper waist cross-section from parameters measured by SEM imaging (blue curve). (b) Normalized output spectrum from the same PCF taper as (a), with average input power increased from 140 mW to 190 mW (respectively in linear and logarithmic scales for bold and thin curves).

Fig. 5.
Fig. 5.

Envelope of interference signal of the widest SC (black curve: linear scale, blue curve: log. scale) with the sidelobe level marked (dashed line).

Fig. 6.
Fig. 6.

Ultrahigh resolution OCT images of selected material samples: cross-sectional images of (a, b) polyolefin foams with different pore size, (g) a 150 μm thick protective coating on wood. (c, d, h) Corresponding en-face OCT images of the foam specimens and the coating, (f) microscope image of a polished cross-section of the protective coating. (e) Demodulated interferogram (from a single depth- or A-scan) with a mirror as sample.

Metrics