Abstract

We report a THz radiation source based on the technique of non-collinear phasematched parametric generation. The source, which is compact and operable at room temperature, generates nanosecond pulses of peak power and energy greater than 1W and 5 nJ respectively. The radiation is continuously tunable over the range 1.2–3.05 THz and is of narrow spectral bandwidth (<100 GHz). The use of intersecting pump and parametric wave cavities results in threshold pump pulse energies below 1 mJ (from a Nd:YAG laser excited at 20 W, 500 μsec by a quasi-CW diode-laser) and close to 50% down-conversion efficiency when operated at twice threshold.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
    [Crossref] [PubMed]
  2. D. Mittleman ed., “Sensing with terahertz radiation” (Springer-Verlag, Berlin, 2003).
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
    [Crossref]
  4. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
    [Crossref]
  5. J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
    [Crossref]
  6. J. Shikata, K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
    [Crossref]
  7. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
    [Crossref]
  8. D. H. Auston and M. C. Nuss, “Electro-optical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron 24, 184–197 (1988).
    [Crossref]
  9. X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
    [Crossref]
  10. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
    [Crossref] [PubMed]
  11. E. R. Mueller, “Submillimeter wave lasers” in Wiley Encyclopedia of Electrical and Electronics Engineering, (John Wiley and Sons, 1999), Vol. 20, p. 597.
  12. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [Crossref]
  13. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
  14. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
    [Crossref]
  15. K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
    [Crossref]
  16. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [Crossref]
  17. E. D. Palik, Handbook of Optical Constants of Solids, (UK Edition, Academic Press Inc. London:1985), p. 702.

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

2002 (4)

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[Crossref]

K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[Crossref]

2001 (1)

2000 (1)

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

1999 (1)

1997 (1)

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

1990 (1)

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

1988 (1)

D. H. Auston and M. C. Nuss, “Electro-optical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron 24, 184–197 (1988).
[Crossref]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[Crossref]

1961 (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Auston, D. H.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

D. H. Auston and M. C. Nuss, “Electro-optical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron 24, 184–197 (1988).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Berry, E.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[Crossref]

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[Crossref]

Chamberlain, J. M.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Darrow, J. T.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Ding, Y. J.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Fernelius, N.

Fitzgerald, A. J.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Fox, A. G.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Hu, B. B.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Imai, K.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Ito, H.

K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
[Crossref]

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

J. Shikata, K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

Jundt, D.

Karino, K-I

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

Kawase, K.

K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
[Crossref]

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

J. Shikata, K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Li, T.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Minamide, H.

Mueller, E. R.

E. R. Mueller, “Submillimeter wave lasers” in Wiley Encyclopedia of Electrical and Electronics Engineering, (John Wiley and Sons, 1999), Vol. 20, p. 597.

Nakamura, K.

Nuss, M. C.

D. H. Auston and M. C. Nuss, “Electro-optical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron 24, 184–197 (1988).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, (UK Edition, Academic Press Inc. London:1985), p. 702.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Sato, M.

J. Shikata, K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Shi, W.

Shikata, J.

Shikata, J-I

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

Shikata, J-I.

K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[Crossref]

Small, D. L.

Smith, M. A.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Taniuchi, T.

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

J. Shikata, K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Vodopyanov, K.

Walker, G. C.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Zelmon, D. E.

Zhang, X. C.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Zinovev, N. N.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, pp. 1011–1013 (1990).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, pp. 2483–2485 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

IEEE J. Quantum Electron (1)

D. H. Auston and M. C. Nuss, “Electro-optical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron 24, 184–197 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J-I Shikata, K. Kawase, K-I Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

K. Kawase, J-I. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-hetrostructure laser,” Nature 417156–159 (2002).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids, (UK Edition, Academic Press Inc. London:1985), p. 702.

D. Mittleman ed., “Sensing with terahertz radiation” (Springer-Verlag, Berlin, 2003).

E. R. Mueller, “Submillimeter wave lasers” in Wiley Encyclopedia of Electrical and Electronics Engineering, (John Wiley and Sons, 1999), Vol. 20, p. 597.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the non-collinear phasematched Thz OPO.

Fig. 2.
Fig. 2.

Undepleted (dashed line) and depleted (solid line) pump pulses for the device operating at twice OPO threshold.The idler pulse is also shown.

Fig. 3.
Fig. 3.

Tuning characteristic of the device.

Metrics