Abstract

We have obtained first solid evidence of strong charge separation that is caused by relaxing localized electrons in a polar medium: Space-charge gratings induced in highly-doped LiNbO3:Fe crystals by interfering nanosecond light pulses at 532 nm show a highly peculiar long-term behavior (buildup or/and decay) in the dark. It depends strongly on the applied electric field E 0 (ranging from -140 to +640 kV/cm) and occurs on a time scale of (1 – 100) s which is much larger than the relaxation time of photo-electrons and smaller than the dark dielectric relaxation time. All peculiarities observed are fully described by a charge-transport model that incorporates the energy relaxation of electrons within a band of localized Fe2+ states and a long-living, field-gradient-independent “polar current” directed along the polar axis.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
    [CrossRef]
  2. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, Gordon and Breach, Philadelphia (1992).
  3. L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
    [CrossRef] [PubMed]
  4. S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
    [CrossRef] [PubMed]
  5. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, Clarendon, Oxford (1996).
  6. K. Buse, "Light-Induced Charge Transport Processes in Photorefractive Crystals II: Materials," Appl. Phys. B 64, 391 (1997).
    [CrossRef]
  7. P. Günter and J. -P. Huignard, eds., Photorefractive Materials and Their Applications, I, Vol. 61 of Topics in Applied Physics, Springer-Verlag, Berlin (1988).
    [CrossRef]
  8. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
    [CrossRef]
  9. I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
    [CrossRef]
  10. K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
    [CrossRef]
  11. M. Luennemann, U. Hartwig, and K. Buse, "Improvements of Sensitivity and Refractive-Index Changes in Photorefractive Iron-Doped Lithium-Niobate Crystals by Application of Extremely Large External Electrical Fields," J. Opt. Soc. Am. B 20, 1643 (2003).
    [CrossRef]
  12. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
    [CrossRef]
  13. F. Jermann and J. Otten, "Light-Induced Charge Transport in LiNbO3:Fe at High Light Intensities," J. Opt. Soc. Am. B 10, 2085 (1993).
    [CrossRef]
  14. J. C. Phillips, "Stretched Exponential Relaxation in Molecular and Electronic Glasses," Rep. Prog. Phys. 59, 1133 (1996).
    [CrossRef]
  15. P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
    [CrossRef]
  16. H. J. Eichler, P. G¨unter, and D. W. Pohl, Laser-Induced Dynamic Gratings, Springer-Verlag, N.Y. (1986).
  17. I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
    [CrossRef]
  18. N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1979).

2005 (1)

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

2004 (1)

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

2003 (3)

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
[CrossRef] [PubMed]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, "Improvements of Sensitivity and Refractive-Index Changes in Photorefractive Iron-Doped Lithium-Niobate Crystals by Application of Extremely Large External Electrical Fields," J. Opt. Soc. Am. B 20, 1643 (2003).
[CrossRef]

2002 (1)

K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
[CrossRef]

2000 (2)

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

1997 (1)

K. Buse, "Light-Induced Charge Transport Processes in Photorefractive Crystals II: Materials," Appl. Phys. B 64, 391 (1997).
[CrossRef]

1996 (1)

J. C. Phillips, "Stretched Exponential Relaxation in Molecular and Electronic Glasses," Rep. Prog. Phys. 59, 1133 (1996).
[CrossRef]

1993 (2)

I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
[CrossRef]

F. Jermann and J. Otten, "Light-Induced Charge Transport in LiNbO3:Fe at High Light Intensities," J. Opt. Soc. Am. B 10, 2085 (1993).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Bel’kov, V. V.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

Biaggio, I.

I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
[CrossRef]

Borghs, G.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Buse, K.

M. Luennemann, U. Hartwig, and K. Buse, "Improvements of Sensitivity and Refractive-Index Changes in Photorefractive Iron-Doped Lithium-Niobate Crystals by Application of Extremely Large External Electrical Fields," J. Opt. Soc. Am. B 20, 1643 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

K. Buse, "Light-Induced Charge Transport Processes in Photorefractive Crystals II: Materials," Appl. Phys. B 64, 391 (1997).
[CrossRef]

De Boeck, J.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

DiCarlo, L.

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
[CrossRef] [PubMed]

Eroms, J.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Ganichev, S. D.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Giglberger, S.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Golub, L. E.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Granzow, T.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

Günter, P.

I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
[CrossRef]

Harris, J. S.

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
[CrossRef] [PubMed]

Hartwig, U.

M. Luennemann, U. Hartwig, and K. Buse, "Improvements of Sensitivity and Refractive-Index Changes in Photorefractive Iron-Doped Lithium-Niobate Crystals by Application of Extremely Large External Electrical Fields," J. Opt. Soc. Am. B 20, 1643 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

Herth, P.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

Imlau, M.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

Ivchenko, E. L.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Jermann, F.

Kr¨atzig, E.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

Krätzig, E.

K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
[CrossRef]

Luennemann, M.

M. Luennemann, U. Hartwig, and K. Buse, "Improvements of Sensitivity and Refractive-Index Changes in Photorefractive Iron-Doped Lithium-Niobate Crystals by Application of Extremely Large External Electrical Fields," J. Opt. Soc. Am. B 20, 1643 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

Marcus, C. M.

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
[CrossRef] [PubMed]

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

Nee, I.

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Otten, J.

Panotopoulos, G.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

Peithmann, K.

K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
[CrossRef]

Phillips, J. C.

J. C. Phillips, "Stretched Exponential Relaxation in Molecular and Electronic Glasses," Rep. Prog. Phys. 59, 1133 (1996).
[CrossRef]

Prettl, W.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Schaniel, D.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

Schneider, P.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Wegscheider, W.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Weiss, D.

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

Woike, Th.

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

Zgonik, M.

I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
[CrossRef]

Appl. Phys. A (1)

I. Biaggio, M. Zgonik, and P. Günter, "Build-Up and Dark Decay of Transient Photorefractive Gratings in Reduced KNbO3," Opt. Commun. 77, 312 (1990); K. Buse, J. Frejlich, G. Kuper, and E. Kr¨atzig, "Dark Build-Up of Holograms in BaTiO3 after Recording," Appl. Phys. A 57, 437 (1993).
[CrossRef]

Appl. Phys. B (3)

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic Properties of Lithium Niobate Crystals for Extremly High External Electric Fields," Appl. Phys. B 76, 403 (2003).
[CrossRef]

K. Peithmann, K. Buse, and E. Krätzig, "Dark Conductivity in Copper-Doped Lithium Niobate Crystals," Appl. Phys. B 74, 549 (2002).
[CrossRef]

K. Buse, "Light-Induced Charge Transport Processes in Photorefractive Crystals II: Materials," Appl. Phys. B 64, 391 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

J. Appl. Phys. (2)

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, "Lifetime of Small Polarons in Iron-Doped Lithium-Niobate Crystals," J. Appl. Phys. 87, 1034 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Kr¨atzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Time of Holograms," J. Appl. Phys. 88, 4282 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. Lett. (3)

P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Kr¨atzig, "Evidence for Light-Induced Hole Polarons in LiNbO3," Phys. Rev. Lett.67404 (2005).
[CrossRef]

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., "Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current through Quantum Dots," Phys. Rev. Lett. 91, 246804 (2003).
[CrossRef] [PubMed]

S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, "Experimental Separation of Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells," Phys. Rev. Lett. 92, 256601 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

J. C. Phillips, "Stretched Exponential Relaxation in Molecular and Electronic Glasses," Rep. Prog. Phys. 59, 1133 (1996).
[CrossRef]

Other (5)

H. J. Eichler, P. G¨unter, and D. W. Pohl, Laser-Induced Dynamic Gratings, Springer-Verlag, N.Y. (1986).

N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1979).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, Clarendon, Oxford (1996).

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, Gordon and Breach, Philadelphia (1992).

P. Günter and J. -P. Huignard, eds., Photorefractive Materials and Their Applications, I, Vol. 61 of Topics in Applied Physics, Springer-Verlag, Berlin (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental configuration; c is the polar axis, K is the grating vector, U 0 is the applied voltage, and I diff and I trans are the intensities of diffracted and transmitted beams.

Fig. 2.
Fig. 2.

Diffraction efficiency η versus post-pulse relaxation time t. Curves 1–8 are plotted for E 0 = -136, -45, 45, 227, 318, 455, 500, and 590 kV/cm. The inset shows the long-term behavior for E 0 = 364 kV/cm.

Fig. 3.
Fig. 3.

Maximum value of η(t) versus E 0; the dots are experimental data and the solid line is a theoretical fit.

Fig. 4.
Fig. 4.

Modification of the dark evolution of the diffraction efficiency η with increasing field E 0. Curves 1 – 8 are plotted for E 0 = -150, -70, 30, 250, 320, 420, 500, and 600 kV/cm.

Fig. 5.
Fig. 5.

Expected density of localized states (solid curves) and distributions of electrons (grayscale) over these states in the equilibrium (a) and non-equilibrium (b) states. The arrows show the energy flow during relaxation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E K dt = j K ε ε 0 ,
j = σ ( E + E R ) ,
σ = σ 0 f ( vt ) [ 1 + cos ( Kz ) ] ,
d E K dt = γ 0 f ( vt ) ( E 0 + E R + E K ) ,
E K = ( E K 0 + E 0 + E R ) exp [ γ 0 v 0 vt f ( s ) ds ] E 0 E R .

Metrics