Abstract

We predict and numerically study supercontinuum generation extending over almost two octaves in planar rib waveguides, with anomalous dispersion at the input wavelength provided by the waveguide contribution. Such planar nonlinear waveguides generating broadband coherent radiation can be intergrated with other components to constitute a building block in intergrated optical circuits.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  4. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russel, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
    [CrossRef]
  5. K. M. Hillingsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893, (2003).
    [CrossRef]
  6. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  7. A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).
    [CrossRef]
  8. K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004)http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045.
    [CrossRef] [PubMed]
  9. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  10. T. Udem, R. Holzwarth, and T. W. H¨ansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  11. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler,"Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  12. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber," Opt. Lett. 29, 2405-2407 (2004).
    [CrossRef] [PubMed]
  13. See special issues JOSA B 19 issue 9, Appl. Phys. B 77 issue 2-3, and P. St. J.Russel, Science 299, 358 (2003).
    [CrossRef]
  14. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  15. V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef]
  16. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004)http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829.
    [CrossRef] [PubMed]
  17. S. Spalter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S-W. Cheong, and R.E. Slusher, "Strong selfphase modulation in planar chalcogenide glass waveguide," Opt. Lett. 27, 363-365 (2002).
    [CrossRef]
  18. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140.
    [CrossRef] [PubMed]
  19. M. J. Adams, An introduction to optical waveguides (John Wiley and Sons, Chichester-New York-Brisbane-Toronto, 1981).
  20. Handbook of Optics, M. Bass (ed.) (McGRAW-HILL, New York, 1995).

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

2004 (5)

2003 (4)

K. M. Hillingsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893, (2003).
[CrossRef]

See special issues JOSA B 19 issue 9, Appl. Phys. B 77 issue 2-3, and P. St. J.Russel, Science 299, 358 (2003).
[CrossRef]

A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

2002 (5)

2001 (2)

2000 (1)

Almelda, V. R.

V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Andersen, T. V.

Barrlos, C. A.

V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Bassi, A.

Boyraz, O.

Cheong, S-W.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Cubeddu, R.

D’Andrea, C.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

Eggleton, B. J.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

Ghanta, R. K.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Grossard, N.

H¨ansch, T. W.

T. Udem, R. Holzwarth, and T. W. H¨ansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Hansen, K. P.

Hartl, I.

Herrmann, J.

A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hilligsoe, K. M.

Hillingsoe, K. M.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. H¨ansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Husakou, A.

A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hwang, H. Y.

Indukuri, T.

Jalali, B.

Jarvis, R.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Katsufuji, T.

Keiding, S.

Keiding, S. R.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russel, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

Ko, T. H.

Kristiansen, R.

Larsen, J. J.

Lenz, G.

Li, W.

Li, X. D.

Lipson, M.

V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Luther-Davies, B.

Madsen, N.

Maillotte, H.

Molmer, K.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Nielsen, C. K.

Ortigosa-Blanch, A.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Papenucci, R. R.

V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Paulsen, H. N.

Pifferi, A.

Provino, L.

Ranka, J. K.

Rode, A.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Ruan, Y.

Russel, P. St. J.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Slusher, R.E.

Spalter, S.

Stentz, A. J.

Swartling, J.

Thogersen, J.

Torricelli, A.

Udem, T.

T. Udem, R. Holzwarth, and T. W. H¨ansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zimmermann, J.

Appl. Phys. B (1)

A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (3)

T. Udem, R. Holzwarth, and T. W. H¨ansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

V. R. Almelda, C. A. Barrlos, R. R. Papenucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (3)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fibers," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Russel, Science (1)

See special issues JOSA B 19 issue 9, Appl. Phys. B 77 issue 2-3, and P. St. J.Russel, Science 299, 358 (2003).
[CrossRef]

Other (2)

M. J. Adams, An introduction to optical waveguides (John Wiley and Sons, Chichester-New York-Brisbane-Toronto, 1981).

Handbook of Optics, M. Bass (ed.) (McGRAW-HILL, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Planar rib waveguide structure (a) and GVD in an Air-TaFD5-SiO2 (b) and an Air-SiO2-Ag (c) structure. In (b) and (c), both the bulk GVD of the central layer (dashed green curves) and the GVD of the guiding structure (solid red curves) are shown. The parameters are a = 4.0 μm, d = 1.0 μm, f = 0.5 μm for (b) and a =4.0 μm, d = 0.5 μm, f = 0.25 μm for (c).

Fig. 2.
Fig. 2.

Supercontinuum generation in a Air-TaFD5-SiO2 structure. For input pulses with FWHM of 150 fs, central wavelength of 1185 nm, and intensity of 0.2 TW/cm2 the spectrum (a) and temporal shape (b) are shown after the propagation of a 10-cm-long waveguide. In (c), the spectrum is shown after the propagation of 10 cm in bulk TaFD5 with the same input parameters. The dotted green curves present the input spectrum.

Fig. 3.
Fig. 3.

Supercontinuum generation in an Air-SiO2-Ag structure. For input pulses with FWHM duration of 150 fs, central wavelength of 798 nm, and intensity of 0.5 TW/cm2 the spectrum (a) and temporal shape (b) are shown after the propagation of a 4-cm-long waveguide. Dotted green curve is the input spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

l d , f × n II 2 ( ω ) n d , f 2 ( ω ) 2 π λ =
tan 1 n d , f 2 ( ω ) n I 2 ( ω ) n II 2 ( ω ) n d , f 2 ( ω ) + tan 1 n d , f 2 ( ω ) n III 2 ( ω ) n II 2 ( ω ) n d , f 2 ( ω )
E z ω z = [ n ( ω ) n g ] c + P NL z ω 2 n ( ω ) ε 0 c
P NL z t = χ 3 ε 0 E z t { ( 1 f ) E z t 2 + f [ Ω + v 2 Ω ] 0 sin ( Ωτ ) exp ( ν τ ) E 2 ( t τ ) }

Metrics