Abstract

Uniform period sub-micron gratings have been fabricated using focused ion beam milling on hafnium oxide waveguides. Atomic force microscopy indicates that the gratings have smooth and uniform profiles. At the period of 330 nm, the largest peak-to-peak height that was achieved was 85 nm. Scattering at the grating imperfections was found to be at least two orders of magnitude weaker than the intensity of the diffracted order.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures," IEEE J. Quantum. Electron. 22, 845-867 (1986).
    [CrossRef]
  2. D. S. Goldman, P. L. White, and N. C. Anheier "Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis," Appl. Opt. 29, 4583-4589 (1990).
    [CrossRef] [PubMed]
  3. K. Kintaka et al, "Integrated waveguide gratings for wavelength-demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
    [CrossRef] [PubMed]
  4. S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
    [CrossRef]
  5. K. Chaganti, I. Avrutsky, and G. W. Auner, "Building a diffractive imaging micro spectrometer," presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10-14, 2004).
  6. J. Cheng and A. J. Steckl, "Focused ion beam fabricated microgratings for integrated optics applications," IEEE J. Sel. Top. Quantum. Electron. 8, 1323-1330 (2002).
    [CrossRef]
  7. V. G. Taeed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davis, S. Janz, and D. Xu, "Higher order mode conversion via focused ion beam milled Bragg gratings in Silicon-on-Insulator waveguides," Opt. Express 12, 5274-5284 (2004).
    [CrossRef]
  8. R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
    [CrossRef]
  9. G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
    [CrossRef]
  10. R. Waldhausel, B. Schnabel, P. Dannberg, E-B Kley, A. Brauer and W. Karthe, "Efficient coupling into polymer waveguides by gratings," Appl. Opt. 36, 9383-9390 (1997).
    [CrossRef]
  11. M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng and P. R. Herman, "Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures," Proc. SPIE 5578, 559-567 (2004).
    [CrossRef]
  12. A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
    [CrossRef]
  13. D.f Heitmann and C. Ortiz, "Calculation and experimental verification of two-dimensional focusing grating couplers," IEEE J. Quantum. Electron. 17, 1257-1263 (1981).
  14. I. Chyr and A. J. Steckl, "GaN focused ion beam micromachining with gas-assisted etching," J. Vac. Sci. Technol. B 19, 2547-2550 (2001).
    [CrossRef]
  15. K. Zinoviev, C. Dominguez and A. Vila, "Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam," Opt. Express 13, 8618-8624 (2005).
    [CrossRef] [PubMed]
  16. N. Yu and A. A. Polycarpou, "Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements," J. Vac. Sci. Technol. B 22, 668-672 (2004).
    [CrossRef]
  17. M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).
  18. A. V. Tishchenko, "Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method," Opt. Quantum Electron. 37, 309-330 (2005).
    [CrossRef]

2005

A. V. Tishchenko, "Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method," Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

K. Zinoviev, C. Dominguez and A. Vila, "Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam," Opt. Express 13, 8618-8624 (2005).
[CrossRef] [PubMed]

2004

2002

J. Cheng and A. J. Steckl, "Focused ion beam fabricated microgratings for integrated optics applications," IEEE J. Sel. Top. Quantum. Electron. 8, 1323-1330 (2002).
[CrossRef]

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

2001

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

I. Chyr and A. J. Steckl, "GaN focused ion beam micromachining with gas-assisted etching," J. Vac. Sci. Technol. B 19, 2547-2550 (2001).
[CrossRef]

1997

1993

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

1990

1986

T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures," IEEE J. Quantum. Electron. 22, 845-867 (1986).
[CrossRef]

1981

D.f Heitmann and C. Ortiz, "Calculation and experimental verification of two-dimensional focusing grating couplers," IEEE J. Quantum. Electron. 17, 1257-1263 (1981).

1977

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

Allwood, D. A.

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

Anheier, N. C.

Austin, R. H.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

Brauer, A.

Cao, H.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

Cheng, J.

J. Cheng and A. J. Steckl, "Focused ion beam fabricated microgratings for integrated optics applications," IEEE J. Sel. Top. Quantum. Electron. 8, 1323-1330 (2002).
[CrossRef]

Chou, S. Y.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

Chyr, I.

I. Chyr and A. J. Steckl, "GaN focused ion beam micromachining with gas-assisted etching," J. Vac. Sci. Technol. B 19, 2547-2550 (2001).
[CrossRef]

Cooke, M. D.

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

Cowburn, R. P.

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

Cox, E. C.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

Dannberg, P.

Dominguez, C.

Eggleton, B.

Freeman, D.

Goldman, D. S.

Janz, S.

Karthe, W.

Katzir, A.

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

Kimura, T.

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

Kintaka, K.

Kley, E-B

Livanos, A. C.

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

Luther-Davis, B.

Madden, S.

Moss, D.

Nishihara, H.

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures," IEEE J. Quantum. Electron. 22, 845-867 (1986).
[CrossRef]

Polycarpou, A. A.

N. Yu and A. A. Polycarpou, "Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements," J. Vac. Sci. Technol. B 22, 668-672 (2004).
[CrossRef]

Samoc, M.

Schnabel, B.

Shellan, J. B.

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

Steckl, A. J.

J. Cheng and A. J. Steckl, "Focused ion beam fabricated microgratings for integrated optics applications," IEEE J. Sel. Top. Quantum. Electron. 8, 1323-1330 (2002).
[CrossRef]

I. Chyr and A. J. Steckl, "GaN focused ion beam micromachining with gas-assisted etching," J. Vac. Sci. Technol. B 19, 2547-2550 (2001).
[CrossRef]

Suhara, T.

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures," IEEE J. Quantum. Electron. 22, 845-867 (1986).
[CrossRef]

Taeed, V. G.

Tegenfeldt, J. O.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

Tishchenko, A. V.

A. V. Tishchenko, "Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method," Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

Ura, S.

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

Vila, A.

Waldhausel, R.

White, P. L.

Xiong, G.

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

Xu, D.

Yariv, A.

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

Yu, N.

N. Yu and A. A. Polycarpou, "Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements," J. Vac. Sci. Technol. B 22, 668-672 (2004).
[CrossRef]

Zinoviev, K.

Appl. Opt.

Appl. Phys. Lett.

G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, "Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling," Appl. Phys. Lett. 79, 3461-3463 (2001).
[CrossRef]

IEEE J. Quantum. Electron.

T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures," IEEE J. Quantum. Electron. 22, 845-867 (1986).
[CrossRef]

A. Katzir, A. C. Livanos, J. B. Shellan and A. Yariv, "Chirped gratings in integrated optics," IEEE J. Quantum. Electron. 13, 296-304 (1977).
[CrossRef]

D.f Heitmann and C. Ortiz, "Calculation and experimental verification of two-dimensional focusing grating couplers," IEEE J. Quantum. Electron. 17, 1257-1263 (1981).

IEEE J. Sel. Top. Quantum. Electron.

J. Cheng and A. J. Steckl, "Focused ion beam fabricated microgratings for integrated optics applications," IEEE J. Sel. Top. Quantum. Electron. 8, 1323-1330 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

S. Ura, T. Kimura, T. Suhara and H. Nishihara, "An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution," IEEE Photonics Technol. Lett. 5, 1291-1293 (1993).
[CrossRef]

IEEE Transactions on Nanotechnology

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou and E. C. Cox, "Scanning the controls: Genomics and Nanotechnology," IEEE Transactions on Nanotechnology 1, 12-18 (2002).
[CrossRef]

J. Vac. Sci. Technol. B

I. Chyr and A. J. Steckl, "GaN focused ion beam micromachining with gas-assisted etching," J. Vac. Sci. Technol. B 19, 2547-2550 (2001).
[CrossRef]

N. Yu and A. A. Polycarpou, "Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements," J. Vac. Sci. Technol. B 22, 668-672 (2004).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

A. V. Tishchenko, "Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method," Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

Other

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng and P. R. Herman, "Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures," Proc. SPIE 5578, 559-567 (2004).
[CrossRef]

M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).

K. Chaganti, I. Avrutsky, and G. W. Auner, "Building a diffractive imaging micro spectrometer," presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10-14, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) AFM image of a 75 nm deep uniform period grating in the top silica cladding of a hafnium oxide waveguide made by UV holographic exposure followed by dry etching (b) More than half-inch (1.27 cm) long He-Ne light track in the waveguide when coupled through the dry etched grating .

Fig. 2.
Fig. 2.

(a) A typical good surface quality uniform period grating on hafnium oxide waveguide made with FIB milling, and its profile (b) AFM image of an over-milled grating fabricated using larger than optimal current (3nA), and its profile.

Fig. 3.
Fig. 3.

(a) He-Ne laser light out-coupling from the hafnium oxide waveguide through four FIB milled gratings. (b) Optical micrograph showing the scheme of the four FIB milled gratings Grating 1: Pitch 357 nm, depth 60 nm, size 40 μm × 50 μm; Grating 2: Pitch 400 nm, depth 60 nm, size 40 μm × 40 μm; Grating 3 (the dark square area within the bigger gray square area): Pitch 400 nm, depth 60 nm, size 40 μm × 40 μm; Grating 4: Pitch 460 nm, depth 60 nm, size 40 μm × 40 μm.

Fig. 4.
Fig. 4.

(a) Experimental set-up for measuring diffraction efficiency (b) Picture of the first diffracted beam and (c) its one-dimensional intensity profile along the horizontal line shown in b. Insert shows the scatter in a section of the CCD.

Tables (1)

Tables Icon

Table 1. FIB settings and milled depth results for HfO2 films

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S i n θ = n * λ Λ

Metrics