Abstract

Uniform period sub-micron gratings have been fabricated using focused ion beam milling on hafnium oxide waveguides. Atomic force microscopy indicates that the gratings have smooth and uniform profiles. At the period of 330 nm, the largest peak-to-peak height that was achieved was 85 nm. Scattering at the grating imperfections was found to be at least two orders of magnitude weaker than the intensity of the diffracted order.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Toshiaki Suhara and Hiroshi Nishihara, ‌Integrated optics components and devices using periodic structures,‍ IEEE J. Quantum. Electron. 22, 845–867 (1986).
    [Crossref]
  2. Don.S. Goldman, P. L. White, and N. C. Anheier ‌Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,‍ Appl. Opt. 29, 4583–4589 (1990).
    [Crossref] [PubMed]
  3. Kenji Kintakaet al, ‌Integrated waveguide gratings for wavelength-demultiplexing of free space waves from guided waves,‍ Opt. Express 12, 3072–3078 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3072.
    [Crossref] [PubMed]
  4. Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
    [Crossref]
  5. Kalyani Chaganti, Ivan Avrutsky, and Gregory W. Auner, ‌Building a diffractive imaging micro spectrometer,‍ presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10–14, 2004).
  6. Ji Cheng and A. J. Steckl, ‌Focused ion beam fabricated microgratings for integrated optics applications,‍ IEEE J. Sel. Top. Quantum. Electron. 8, 1323–1330 (2002).
    [Crossref]
  7. V. G. Taeed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davis, S. Janz, and D. Xu, ‌Higher order mode conversion via focused ion beam milled Bragg gratings in Silicon-on-Insulator waveguides,‍ Opt. Express 12, 5274–5284 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5274.
    [Crossref]
  8. Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
    [Crossref]
  9. Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
    [Crossref]
  10. R. Waldhausel, B. Schnabel, P. Dannberg, E-B Kley, A. Brauer, and W. Karthe, ‌Efficient coupling into polymer waveguides by gratings,‍ Appl. Opt. 36, 9383–9390 (1997).
    [Crossref]
  11. M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
    [Crossref]
  12. A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
    [Crossref]
  13. Detlef Heitmann and Carmen Ortiz, ‌Calculation and experimental verification of two-dimensional focusing grating couplers,‍ IEEE J. Quantum. Electron.17, 1257–1263 (1981).
  14. I. Chyr and A. J. Steckl, ‌GaN focused ion beam micromachining with gas-assisted etching,‍ J. Vac. Sci. Technol. B 19, 2547–2550 (2001).
    [Crossref]
  15. K. Zinoviev, C. Dominguez, and A. Vila, ‌Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam,‍ Opt. Express 13, 8618–8624 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8618.
    [Crossref] [PubMed]
  16. Ning Yu and Andreas A. Polycarpou, ‌Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements,‍ J. Vac. Sci. Technol. B 22, 668–672 (2004).
    [Crossref]
  17. M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).
  18. A. V. Tishchenko, ‌Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,‍ Opt. Quantum Electron. 37, 309–330 (2005).
    [Crossref]

2005 (2)

A. V. Tishchenko, ‌Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,‍ Opt. Quantum Electron. 37, 309–330 (2005).
[Crossref]

K. Zinoviev, C. Dominguez, and A. Vila, ‌Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam,‍ Opt. Express 13, 8618–8624 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8618.
[Crossref] [PubMed]

2004 (4)

Kenji Kintakaet al, ‌Integrated waveguide gratings for wavelength-demultiplexing of free space waves from guided waves,‍ Opt. Express 12, 3072–3078 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3072.
[Crossref] [PubMed]

V. G. Taeed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davis, S. Janz, and D. Xu, ‌Higher order mode conversion via focused ion beam milled Bragg gratings in Silicon-on-Insulator waveguides,‍ Opt. Express 12, 5274–5284 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5274.
[Crossref]

Ning Yu and Andreas A. Polycarpou, ‌Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements,‍ J. Vac. Sci. Technol. B 22, 668–672 (2004).
[Crossref]

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

2002 (2)

Ji Cheng and A. J. Steckl, ‌Focused ion beam fabricated microgratings for integrated optics applications,‍ IEEE J. Sel. Top. Quantum. Electron. 8, 1323–1330 (2002).
[Crossref]

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

2001 (2)

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

I. Chyr and A. J. Steckl, ‌GaN focused ion beam micromachining with gas-assisted etching,‍ J. Vac. Sci. Technol. B 19, 2547–2550 (2001).
[Crossref]

1997 (1)

1993 (1)

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

1990 (1)

1986 (1)

Toshiaki Suhara and Hiroshi Nishihara, ‌Integrated optics components and devices using periodic structures,‍ IEEE J. Quantum. Electron. 22, 845–867 (1986).
[Crossref]

1981 (1)

M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).

1977 (1)

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).

Allwood, D. A.

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

Anheier, N. C.

Auner, Gregory W.

Kalyani Chaganti, Ivan Avrutsky, and Gregory W. Auner, ‌Building a diffractive imaging micro spectrometer,‍ presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10–14, 2004).

Austin, Robert H.

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

Avrutsky, Ivan

Kalyani Chaganti, Ivan Avrutsky, and Gregory W. Auner, ‌Building a diffractive imaging micro spectrometer,‍ presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10–14, 2004).

Bader, M. A.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Brauer, A.

Cao, Han

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

Chaganti, Kalyani

Kalyani Chaganti, Ivan Avrutsky, and Gregory W. Auner, ‌Building a diffractive imaging micro spectrometer,‍ presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10–14, 2004).

Cheng, Ji

Ji Cheng and A. J. Steckl, ‌Focused ion beam fabricated microgratings for integrated optics applications,‍ IEEE J. Sel. Top. Quantum. Electron. 8, 1323–1330 (2002).
[Crossref]

Chou, Stephen Y.

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

Chyr, I.

I. Chyr and A. J. Steckl, ‌GaN focused ion beam micromachining with gas-assisted etching,‍ J. Vac. Sci. Technol. B 19, 2547–2550 (2001).
[Crossref]

Cooke, M. D.

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

Cowburn, R. P.

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

Cox, Edward C.

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

Dannberg, P.

Dominguez, C.

Eggleton, B.

Freeman, D.

Goldman, Don.S.

Herman, P. R.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Ihlemann, J.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Janz, S.

Kappel, C.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Karthe, W.

Katzir, A.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Kimura, T.

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

Kintaka, Kenji

Kley, E-B

Livanos, A. C.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Luther-Davis, B.

Madden, S.

Moss, D.

Ng, M. L.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Nishihara, H.

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

Nishihara, Hiroshi

Toshiaki Suhara and Hiroshi Nishihara, ‌Integrated optics components and devices using periodic structures,‍ IEEE J. Quantum. Electron. 22, 845–867 (1986).
[Crossref]

Polycarpou, Andreas A.

Ning Yu and Andreas A. Polycarpou, ‌Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements,‍ J. Vac. Sci. Technol. B 22, 668–672 (2004).
[Crossref]

Samoc, M.

Schnabel, B.

Selle, A.

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Shellan, J. B.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Steckl, A. J.

Ji Cheng and A. J. Steckl, ‌Focused ion beam fabricated microgratings for integrated optics applications,‍ IEEE J. Sel. Top. Quantum. Electron. 8, 1323–1330 (2002).
[Crossref]

I. Chyr and A. J. Steckl, ‌GaN focused ion beam micromachining with gas-assisted etching,‍ J. Vac. Sci. Technol. B 19, 2547–2550 (2001).
[Crossref]

Suhara, T.

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

Suhara, Toshiaki

Toshiaki Suhara and Hiroshi Nishihara, ‌Integrated optics components and devices using periodic structures,‍ IEEE J. Quantum. Electron. 22, 845–867 (1986).
[Crossref]

Taeed, V. G.

Tegenfeldt, Jonas O.

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

Tishchenko, A. V.

A. V. Tishchenko, ‌Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,‍ Opt. Quantum Electron. 37, 309–330 (2005).
[Crossref]

Ura, Shogo

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

Vila, A.

Waldhausel, R.

White, P. L.

Xiong, Gang

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

Xu, D.

Yariv, A.

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Yu, Ning

Ning Yu and Andreas A. Polycarpou, ‌Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements,‍ J. Vac. Sci. Technol. B 22, 668–672 (2004).
[Crossref]

Zinoviev, K.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Gang Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, ‌Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,‍ Appl. Phys. Lett. 79, 3461–3463 (2001).
[Crossref]

IEEE J. Quantum. Electron. (2)

A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, ‌Chirped gratings in integrated optics,‍ IEEE J. Quantum. Electron. 13, 296–304 (1977).
[Crossref]

Toshiaki Suhara and Hiroshi Nishihara, ‌Integrated optics components and devices using periodic structures,‍ IEEE J. Quantum. Electron. 22, 845–867 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

Ji Cheng and A. J. Steckl, ‌Focused ion beam fabricated microgratings for integrated optics applications,‍ IEEE J. Sel. Top. Quantum. Electron. 8, 1323–1330 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Shogo Ura, T. Kimura, T. Suhara, and H. Nishihara, ‌An integrated-optic device using electrooptic polymer waveguide on Si Substrate for modulating focus spot intensity distribution,‍ IEEE Photonics Technol. Lett. 5, 1291–1293 (1993).
[Crossref]

IEEE Transactions on Nanotechnology (1)

Robert H. Austin, Jonas O. Tegenfeldt, Han Cao, Stephen Y. Chou, and Edward C. Cox, ‌Scanning the controls: Genomics and Nanotechnology,‍ IEEE Transactions on Nanotechnology 1, 12–18 (2002).
[Crossref]

J. Vac. Sci. Technol. B (2)

I. Chyr and A. J. Steckl, ‌GaN focused ion beam micromachining with gas-assisted etching,‍ J. Vac. Sci. Technol. B 19, 2547–2550 (2001).
[Crossref]

Ning Yu and Andreas A. Polycarpou, ‌Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10nm nanoindentation measurements,‍ J. Vac. Sci. Technol. B 22, 668–672 (2004).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

A. V. Tishchenko, ‌Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,‍ Opt. Quantum Electron. 37, 309–330 (2005).
[Crossref]

Proc. SPIE (1)

M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, ‌Fabrication of sub-micron gratings in ultrathin films by 157-nm laser ablation and their application as grating waveguide structures,‍ Proc. SPIE 5578, 559–567 (2004).
[Crossref]

Other (3)

Detlef Heitmann and Carmen Ortiz, ‌Calculation and experimental verification of two-dimensional focusing grating couplers,‍ IEEE J. Quantum. Electron.17, 1257–1263 (1981).

M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, New York, 1981).

Kalyani Chaganti, Ivan Avrutsky, and Gregory W. Auner, ‌Building a diffractive imaging micro spectrometer,‍ presentation FWH36, Frontiers in Optics/Laser Science XX conference, Rochester, New York (Oct 10–14, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) AFM image of a 75 nm deep uniform period grating in the top silica cladding of a hafnium oxide waveguide made by UV holographic exposure followed by dry etching (b) More than half-inch (1.27 cm) long He-Ne light track in the waveguide when coupled through the dry etched grating .

Fig. 2.
Fig. 2.

(a) A typical good surface quality uniform period grating on hafnium oxide waveguide made with FIB milling, and its profile (b) AFM image of an over-milled grating fabricated using larger than optimal current (3nA), and its profile.

Fig. 3.
Fig. 3.

(a) He-Ne laser light out-coupling from the hafnium oxide waveguide through four FIB milled gratings. (b) Optical micrograph showing the scheme of the four FIB milled gratings Grating 1: Pitch 357 nm, depth 60 nm, size 40 μm × 50 μm; Grating 2: Pitch 400 nm, depth 60 nm, size 40 μm × 40 μm; Grating 3 (the dark square area within the bigger gray square area): Pitch 400 nm, depth 60 nm, size 40 μm × 40 μm; Grating 4: Pitch 460 nm, depth 60 nm, size 40 μm × 40 μm.

Fig. 4.
Fig. 4.

(a) Experimental set-up for measuring diffraction efficiency (b) Picture of the first diffracted beam and (c) its one-dimensional intensity profile along the horizontal line shown in b. Insert shows the scatter in a section of the CCD.

Tables (1)

Tables Icon

Table 1. FIB settings and milled depth results for HfO2 films

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S i n θ = n * λ Λ

Metrics