Abstract

By employing the surface and bulk micro-electro-mechanical system (MEMS) techniques, we design and demonstrate a simple and miniature optical Fabry-Perot interferometric pressure sensor, where the loaded pressure is gauged by measuring the spectrum shift of the reflected optical signal. From the simulation results based on a multiple cavities interference model, we find that the response range and sensitivity of this pressure sensor can be simply altered by adjusting the size of sensing area. The experimental results show that high linear response in the range of 0.2–1.0 Mpa and a reasonable sensitivity of 10.07 nm/MPa (spectrum shift/pressure) have been obtained for this sensor.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Wolthuis, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
    [CrossRef] [PubMed]
  2. Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot cavity pressure transducer," IEEE Photonics Technol. Lett. 7, 1471-1473 (1995).
    [CrossRef]
  3. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
    [CrossRef]
  4. J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
    [CrossRef]
  5. W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
    [CrossRef]
  6. W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
    [CrossRef]
  7. W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
    [CrossRef]
  8. J. Zhou, and S. Dasgupta, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
    [CrossRef]
  9. L. Landeau and L. Lifschitz, Theory of Elasticity (Pergamon 1970).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980).
  11. M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 23, 237-244 (2004).
    [CrossRef]
  12. H. Hai and M. Wang, "Theory and experiment study on self-mixing interference with multiple external reflectors, " Chin. J. Laser. 31, 1373-1377 (2004).
  13. Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]

2004 (3)

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 23, 237-244 (2004).
[CrossRef]

H. Hai and M. Wang, "Theory and experiment study on self-mixing interference with multiple external reflectors, " Chin. J. Laser. 31, 1373-1377 (2004).

2003 (2)

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
[CrossRef]

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

2001 (2)

J. Zhou, and S. Dasgupta, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

2000 (1)

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

1997 (1)

Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

1995 (1)

Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot cavity pressure transducer," IEEE Photonics Technol. Lett. 7, 1471-1473 (1995).
[CrossRef]

1991 (1)

R. A. Wolthuis, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef] [PubMed]

Abeysinghe, D. C.

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Boyd, J. T.

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

J. Zhou, and S. Dasgupta, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Guo, D. G.

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Hai, H.

H. Hai and M. Wang, "Theory and experiment study on self-mixing interference with multiple external reflectors, " Chin. J. Laser. 31, 1373-1377 (2004).

Han, J.

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

Kim, J. S.

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

Kim, J. Y.

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

Kim, T. S.

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

Kim, Y.

Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot cavity pressure transducer," IEEE Photonics Technol. Lett. 7, 1471-1473 (1995).
[CrossRef]

Lai, G.

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 23, 237-244 (2004).
[CrossRef]

Li, W.

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
[CrossRef]

Lin, R. M.

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Neikirk, D. P.

Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot cavity pressure transducer," IEEE Photonics Technol. Lett. 7, 1471-1473 (1995).
[CrossRef]

Rao, Y.

Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Ren, Y.

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Sun, T. T.

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Wang, M.

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 23, 237-244 (2004).
[CrossRef]

H. Hai and M. Wang, "Theory and experiment study on self-mixing interference with multiple external reflectors, " Chin. J. Laser. 31, 1373-1377 (2004).

Wang, W. J.

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Wolthuis, R. A.

R. A. Wolthuis, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, and S. Dasgupta, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Chin. J. Laser. (1)

H. Hai and M. Wang, "Theory and experiment study on self-mixing interference with multiple external reflectors, " Chin. J. Laser. 31, 1373-1377 (2004).

IEEE Photonics Technol. Lett. (2)

Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot cavity pressure transducer," IEEE Photonics Technol. Lett. 7, 1471-1473 (1995).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, "A novel MEMS pressure sensor fabricated on an optical fiber," IEEE Photonics Technol. Lett. 13, 993-995 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. A. Wolthuis, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Microelectron. Eng. (1)

W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, and Y. Ren, "Performance enhanced Fabry-Perot microcavity structure with a novel non-planar diaphragm," Microelectron. Eng. 70, 102-108 (2003).
[CrossRef]

Opt. Commun. (1)

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 23, 237-244 (2004).
[CrossRef]

Opt. Eng. (2)

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Wavelength multiplexing of MEMS pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings," Opt. Eng. 42, 431-438 (2003).
[CrossRef]

J. Zhou, and S. Dasgupta, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Sens. Actuators A (2)

W. J. Wang, R. M. Lin, D. G. Guo, and T. T. Sun, "Development of a novel Fabry-Perot pressure microsensor," Sens. Actuators A 116, 59-65 (2004).
[CrossRef]

J. Han, J. Y. Kim, T. S. Kim, and J. S. Kim, "Performance of Fabry-Perot microcavity structures with corrugated diaphragms," Sens. Actuators A 79, 162-72 (2000).
[CrossRef]

Other (2)

L. Landeau and L. Lifschitz, Theory of Elasticity (Pergamon 1970).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of the optical MEMS pressure sensor

Fig. 2.
Fig. 2.

Multiple cavities interference model of the optical MEMS pressure sensor

Fig. 3.
Fig. 3.

Influence of loaded pressures on the reflected spectrum.

Fig. 4.
Fig. 4.

Influence of the glass thickness on the reflected spectrum.

Fig. 5.
Fig. 5.

Processing steps for fabrication of the optical MEMS pressure sensor

Fig. 6.
Fig. 6.

Experimental setup for the optical MEMS Pressure sensor

Fig. 7.
Fig. 7.

Optical signals obtained from OSA. (a) Spectrum of the ASE light source, (b) reflection spectrum of the sensor; and (c) the filtered reflection spectrum.

Fig. 8.
Fig. 8.

Results of the pressure measurements and its linear fit.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ω ( r ) = 3 P R 0 4 ( 1 υ 2 ) 16 E h 3 ( 1 r 2 R 0 2 ) 2 = ω 0 ( 1 r 2 R 0 2 ) 2
L = L 0 ω
r 1 = r 1 + κ 1 exp ( 1 ) + κ 2 exp ( 2 ) + κ 3 exp ( 3 )
κ 1 = η 1 ( 1 r 1 2 ) r 2
κ 2 = η 1 η 2 ( 1 r 1 2 ) ( 1 r 2 2 ) r 3
κ 3 = η 1 η 2 η 3 ( 1 r 1 2 ) ( 1 r 2 2 ) ( 1 r 3 2 ) r 4
r 1 Re [ r 1 ] = r 1 + κ 1 cos ( ϕ 1 ) + κ 2 cos ( ϕ 2 ) + κ 3 cos ( ϕ 3 )
φ 2 = 4 πn air L λ
Δ φ 2 Δ λ λ = λ m = 0 = 4 πn air ( Δ L λ m Δλ m λ m 2 L )
Δ φ 2 = 4 πn air ( L 1 L 2 L 2 λ 1 ) λ 1 λ 2 4 πn air Δ L λ
Δ φ 2 Δ P = 4 πn air λ L λ m Δλ m Δ P 4 πn air L λ m ( P 0 ) [ 1 λ m ( P 0 ) Δ λ m Δ P ]
Se = 1 λ m ( P 0 ) Δ λ m Δ P = Δ λ m λ m ( P 0 ) Δ L 3 R 0 4 ( 1 υ 2 ) 16 Eh 3
Δ P max = 16 Eh 3 3 R 0 4 ( 1 υ 2 ) Δ L = 8 Eh 3 3 R 0 4 ( 1 υ 2 ) λ n air

Metrics