Abstract

A novel distributed fiber Raman amplified star topology used for optical sensor wavelength-division multiplexing is proposed. The performance of this star configuration is compared to an optically amplified bus topology. The two different network topologies are compared and demonstrated experimentally and theoretically as means of gathering information from four wavelength-division-multiplexed photonic sensors. We report how the star configuration yields better signal-to-noise ratios than the bus topology. Furthermore, this improvement is made without increasing the complexity of the regular star topologies.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Abad, M. López-Amo and I. R. Matías, "Active fiber optic sensor networks," in Handbook of Optical Fiber Sensing Technology, J.M. López-Higuera, ed. (John Wiley, 2002), Chap. 22.
  2. M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson and G. S. Kino, "Acoustic fiber sensor arrays," in Proc. Second European Workshop on Optical Fibre Sensors (EWOFS’04), Proc. SPIE, 5502 39-50 (2004).
    [CrossRef]
  3. S. Diaz, G. Lasheras and M. López-Amo, "WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors," Opt. Express 13, 9666-9671 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-24-9666
    [CrossRef] [PubMed]
  4. T. J. Ellingham, J. D. Ania-Castañón, S. K. Turitsyn, A. Pustovskikh, S. Kobtsev and M. P. Fedoruk, "Dual-pump Raman amplification with increased flatness using modulation instability," Opt. Express 13, 1079-1084 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1079
    [CrossRef] [PubMed]
  5. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "Raman amplifier-based long-distance remote, strain and temperature sensing system using an Erbium-doped fiber and a Fiber Bragg Grating," Opt. Express 12, 3515-3520 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3515
    [CrossRef] [PubMed]
  6. Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
    [CrossRef]
  7. J. Bromage, P. J. Winzer, and R. J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications 2, M. N. Islam ed. (Springer, 2004), Chap. 15.
  8. S. Abad, M. López-Amo, J. M. López-Higuera, D. Benito, A. Unanua and E. Achaerandio, "Single and double distributed optical amplifier bus networks with wavelength-division multiplexing for photonic sensors," Opt. Lett. 24, 805-807 (1999).
    [CrossRef]
  9. N. Kashima, "Optical Amplifiers," in Optical transmission for the subscriber loop, ed. (Artech House, 1993), Chap. 5.

2005 (2)

2004 (1)

1999 (2)

Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
[CrossRef]

S. Abad, M. López-Amo, J. M. López-Higuera, D. Benito, A. Unanua and E. Achaerandio, "Single and double distributed optical amplifier bus networks with wavelength-division multiplexing for photonic sensors," Opt. Lett. 24, 805-807 (1999).
[CrossRef]

Abad, S.

Achaerandio, E.

Ania-Castañón, J. D.

Benito, D.

Chang, Y. M.

Chung, H.

Diaz, S.

Ellingham, T. J.

Emori, Y.

Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
[CrossRef]

Fedoruk, M. P.

Han, Y. G.

Kim, S. H.

Kobtsev, S.

Lasheras, G.

Lee, J. H.

Lee, S. B.

López-Amo, M.

López-Higuera, J. M.

Namiki, S.

Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
[CrossRef]

Pustovskikh, A.

Tanaka, K.

Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
[CrossRef]

Turitsyn, S. K.

Unanua, A.

Electron. Lett. (1)

Y. Emori, K. Tanaka, and S. Namiki, "100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit," Electron. Lett.1355-1356 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

J. Bromage, P. J. Winzer, and R. J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications 2, M. N. Islam ed. (Springer, 2004), Chap. 15.

N. Kashima, "Optical Amplifiers," in Optical transmission for the subscriber loop, ed. (Artech House, 1993), Chap. 5.

S. Abad, M. López-Amo and I. R. Matías, "Active fiber optic sensor networks," in Handbook of Optical Fiber Sensing Technology, J.M. López-Higuera, ed. (John Wiley, 2002), Chap. 22.

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson and G. S. Kino, "Acoustic fiber sensor arrays," in Proc. Second European Workshop on Optical Fibre Sensors (EWOFS’04), Proc. SPIE, 5502 39-50 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Wavelength-division-multiplexed distributed fiber Raman amplifier bus network. S1-S4 location of sensors. (b) Wavelength-division-multiplexed distributed fiber Raman amplifier star network. S1-S4 location of sensors. The fiber lengths and the grating peak wavelengths and reflectivities are indicated.

Fig. 2.
Fig. 2.

(a) Amplified output power obtained for the bus topology with an applied pump power of 270 mW. The signal wavelengths are those of Figs. 1(a). 1(b) Amplified output power obtained for the star topology with an applied pump power of 350 mW. The signal wavelengths are those of Fig. 1(b).

Fig. 3.
Fig. 3.

Variation of the gain with the number of sensors in a bus network (SLEX = 1 dB, SLMOD = 10 dB, γ = 0.98).

Fig. 4.
Fig. 4.

(a). Maximum number of sensors in an active star network with postamplifier (PIN = -10 dBm, PMDP = -50 dBm, SLEX = 1 dB, SLMOD = 10 dB, γ= 0.98). (b) Noise figure of an active star network with postamplifier.

Tables (1)

Tables Icon

Table 1. Measured values of power and optical signal to noise ratio obtained from Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P N = P IN · 0.1 2 · k 2 · ( 1 k ) 2 N 2 · γ 2 N + 2 · SL EX · SL MOD
γ = k = 1 N P outk P in
P OUT = P IN · 0.1 2 · γ 2 k 2 ( 1 k ) 2 · SL EX · SL MOD
P OUT = P IN · SL EX · SL MOD · γ 2 N 2
N = P IN · SL EX · SL MOD P MDP · γ
G = ( N γ ) 2 P MDP P IN · SL EX · SL MOD
F = SNR in SNR out

Metrics