Abstract

In a slanted Bragg grating, coupling between the fundamental guided mode and the counterpropagative cladding modes result in discrete resonances in the transmission spectrum. These resonances are a drawback when Slanted Bragg Gratings are used for gain flattening of fibres amplifiers. A new method based on a chemical etching of the cladding is proposed leading to an overlap of the resonances and a reduction of the amplitude of the modulation. This method can be applied for any value of photo induced modulation amplitude in the SBG.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nonlinear propagation in superstructure Bragg gratings

Benjamin J. Eggleton, R. E. Slusher, and C. Martijn de Sterke
Opt. Lett. 21(16) 1223-1225 (1996)

Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp

Yitang Dai, Xiangfei Chen, Li Xia, Yejin Zhang, and Shizhong Xie
Opt. Lett. 29(12) 1333-1335 (2004)

Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts

Yitang Dai, Xiangfei Chen, Jie Sun, and Shizhong Xie
Opt. Lett. 31(3) 311-313 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Light. Technol. 9, 271 (1991)
    [Crossref]
  2. R. Kashyap, “Fiber Bragg gratings,” in Optics and Photonics, (Academic Press, 1999).
  3. I. Riant, “Fiber gratings for gain equalisation,” in Technical Digest of Optical Amplifiers and their Applications and of Bragg Gratings, Photosensitivity and Poling in Glass waveguides, Invited Papers OAA/BGPP’01, (2001)
  4. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
    [Crossref]
  5. R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
    [Crossref]
  6. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A. 13, 296–313 (1996).
    [Crossref]
  7. L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
    [Crossref]
  8. G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett. 37, 289–290 (2001).
    [Crossref]
  9. I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

2001 (1)

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett. 37, 289–290 (2001).
[Crossref]

2000 (1)

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

1999 (1)

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

1996 (1)

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A. 13, 296–313 (1996).
[Crossref]

1993 (2)

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
[Crossref]

R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Light. Technol. 9, 271 (1991)
[Crossref]

Bayon, J. F.

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

Brilland, L.

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

Campbell, R. J.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
[Crossref]

Croz, V.

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

Delevaque, E.

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Light. Technol. 9, 271 (1991)
[Crossref]

Erdogan, T.

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A. 13, 296–313 (1996).
[Crossref]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett. 37, 289–290 (2001).
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Light. Technol. 9, 271 (1991)
[Crossref]

Kashyap, R.

R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
[Crossref]

R. Kashyap, “Fiber Bragg gratings,” in Optics and Photonics, (Academic Press, 1999).

Laffont, G.

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett. 37, 289–290 (2001).
[Crossref]

Lopez, T.

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

McKee, P. F.

R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

Muller, C.

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

Pureur, D.

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

Riant, I.

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

I. Riant, “Fiber gratings for gain equalisation,” in Technical Digest of Optical Amplifiers and their Applications and of Bragg Gratings, Photosensitivity and Poling in Glass waveguides, Invited Papers OAA/BGPP’01, (2001)

Sansonetti, P

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

Sipe, J. E.

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A. 13, 296–313 (1996).
[Crossref]

Wyatt, R.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
[Crossref]

R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

Electron. Lett. (4)

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive blazed grating,” Electron. Lett. 29, 154–156 (1993)
[Crossref]

R. Kashyap, R. Wyatt, and P. F. McKee, “Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999).
[Crossref]

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett. 37, 289–290 (2001).
[Crossref]

J. Light. Technol. (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Light. Technol. 9, 271 (1991)
[Crossref]

J. Opt. Soc. Am. A. (1)

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A. 13, 296–313 (1996).
[Crossref]

Tech. Digest of OFC' 2000 (1)

I. Riant, C. Muller, T. Lopez, V. Croz, and P Sansonetti, “New and efficient technique for suppressing the peaks induced in fiber slanted Bragg grating spectrum,” Tech. Digest of OFC′ 2000, (2000) pp 118–120.

Other (2)

R. Kashyap, “Fiber Bragg gratings,” in Optics and Photonics, (Academic Press, 1999).

I. Riant, “Fiber gratings for gain equalisation,” in Technical Digest of Optical Amplifiers and their Applications and of Bragg Gratings, Photosensitivity and Poling in Glass waveguides, Invited Papers OAA/BGPP’01, (2001)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalised transmission spectrum of a 2 mm long 6° blazed Bragg grating into a standard singled mode fibre (Corning SMF28). The grating is uncoated and surrounded by air. In grey the transmission spectrum before treatment and in black after treatment. The peaks due to discrete cladding mode coupling can clearly be observed.

Fig. 2:
Fig. 2:

Record of the amplitude of the modulation for different chemical treatment times (t=0 filled diamonds, t=45sec empty diamonds, t=1min45sec filled squares, t=10 min empty squares). Full line with diamonds is the pristine sbg transmission.

Fig. 3.
Fig. 3.

Picture of a fibre diameter after chemical treatment.

Fig. 4.
Fig. 4.

Normalised peak to peak amplitude of the ripple and resonances FWHM as a function of the chemical treatment

Fig. 5.
Fig. 5.

Normalised transmission spectrum of a 2 mm long 6° blazed Bragg grating into a standard singled mode fibre (Corning SMF28). The grating is uncoated and surrounded by air. In grey the transmission spectrum before polishing and in black after polishing.

Fig. 6.
Fig. 6.

Evolution of the wavelength of a peak as a function of the etching depth

Metrics