Abstract

We have guided cold 85Rb atoms in a blue-detuned, high-order hollow laser beam generated by a binary spatial light modulator. The binary holograms written to the modulator produce smooth hollow laser beams with steep intensity walls that can be updated with a 1.6 kHz refresh rate. We analyze the guiding laser beams numerically and experimentally, and show that the atoms are exposed to an average intensity that is ~2% of the maximum intensity of the guide at a laser detuning of 1 GHz and 2 mW of optical power.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
    [CrossRef]
  2. Y. Song, D. Milam, and W. T. Hill III, "Long, narrow all-light atom guide," Opt. Lett. 24, 1805-1807 (1999).
    [CrossRef]
  3. A. Kaplan, N. Friedman, and N. Davidson, "Optimized single-beam dark optical trap," J. Opt. Soc. Am. B 19, 1233-1238 (2001).
    [CrossRef]
  4. R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
    [CrossRef]
  5. Ya. Izdebskaya, V. Shvedov, and A. Volyar, "Focusing of wedge-generated higher-order hollow beams," Opt. Lett. 30, 2530-2532 (2005).
    [CrossRef] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
    [CrossRef] [PubMed]
  7. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  8. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill III, and R. Roy, "Generation of nondiffracting Bessel beams by use of a spatial light modulator," Opt. Lett. 28, 2183-2185 (2003).
    [CrossRef] [PubMed]
  9. F. K. Fatemi and M. Bashkansky, "Generation of hollow beams by using a binary spatial light modulator," Opt. Lett. (to be published).
    [PubMed]
  10. V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
    [CrossRef]
  11. S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, "Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator," J. Opt. Soc. Am. B 21, 1889-1894 (2004).
    [CrossRef]
  12. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11, 2053-2059 (2003)http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053.
    [CrossRef] [PubMed]
  13. V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
    [CrossRef]
  14. J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
    [CrossRef]
  15. J. Durnin, "Exact solutions for nondiffracting beams. 1. The scalar theory," J. Opt. Soc. Am 4, 651-654 (1987).
    [CrossRef]
  16. A. Vasara, J. Turunen, and A. T. Friberg, "Realization of general nondiffracting beams with computer-generated holograms," J. Opt. Soc. Am. A 6, 1748-1754 (1989).
    [CrossRef] [PubMed]
  17. Y. Xia and J. Yin, "Generation of a focused hollow beam by an 2π-phase plate and its application in atom or molecule optics," J. Opt. Soc. Am. B 22, 529-536 (2005).
    [CrossRef]
  18. T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
    [CrossRef]

2005 (2)

2004 (3)

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, "Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator," J. Opt. Soc. Am. B 21, 1889-1894 (2004).
[CrossRef]

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

2003 (3)

2002 (1)

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
[CrossRef]

1999 (2)

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
[CrossRef]

Y. Song, D. Milam, and W. T. Hill III, "Long, narrow all-light atom guide," Opt. Lett. 24, 1805-1807 (1999).
[CrossRef]

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

J. Durnin, "Exact solutions for nondiffracting beams. 1. The scalar theory," J. Opt. Soc. Am 4, 651-654 (1987).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Arlt, J.

J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
[CrossRef]

Bashkansky, M.

F. K. Fatemi and M. Bashkansky, "Generation of hollow beams by using a binary spatial light modulator," Opt. Lett. (to be published).
[PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Bergamini, S.

Birch, M.

Boyer, V.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Browaeys, A.

Chandrashekar, C. M.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Chattrapiban, N.

Cofield, D.

Crain, J.

Daria, V. R.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

Darquie, B.

Davidson, N.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
[CrossRef]

A. Kaplan, N. Friedman, and N. Davidson, "Optimized single-beam dark optical trap," J. Opt. Soc. Am. B 19, 1233-1238 (2001).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
[CrossRef]

Dholakia, K.

J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
[CrossRef]

Durnin, J.

J. Durnin, "Exact solutions for nondiffracting beams. 1. The scalar theory," J. Opt. Soc. Am 4, 651-654 (1987).
[CrossRef]

Fatemi, F. K.

F. K. Fatemi and M. Bashkansky, "Generation of hollow beams by using a binary spatial light modulator," Opt. Lett. (to be published).
[PubMed]

Foot, C. J.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Friberg, A. T.

Friedman, N.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
[CrossRef]

A. Kaplan, N. Friedman, and N. Davidson, "Optimized single-beam dark optical trap," J. Opt. Soc. Am. B 19, 1233-1238 (2001).
[CrossRef]

Gluckstad, J.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

Grangier, P.

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Heggarty, K.

Hill, W. T.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Hitomi, T.

J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
[CrossRef]

Hossack, W. J.

Izdebskaya, Ya.

Jacubowiez, L.

Jones, M.

Kaplan, A.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
[CrossRef]

A. Kaplan, N. Friedman, and N. Davidson, "Optimized single-beam dark optical trap," J. Opt. Soc. Am. B 19, 1233-1238 (2001).
[CrossRef]

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Laczik, Z. J.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Milam, D.

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
[CrossRef]

Rodrigo, P. J.

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

Rogers, E. A.

Roy, R.

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Shvedov, V.

Song, Y.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Theofanidou, E.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Turunen, J.

Vasara, A.

Volyar, A.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Xia, Y.

Yin, J.

Adv. At. Mol. Opt. Phys. (1)

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. At. Mol. Opt. Phys. 48, 99-151 (2002).
[CrossRef]

Appl. Phys. B (1)

J. Arlt, T. Hitomi, and K. Dholakia, "Atom guiding along Laguerre-Gaussian and Bessel light beams," Appl. Phys. B 71, 549-554 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

J. Mod. Opt. (1)

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, "Dynamic optical trap generation using FLC SLMs for the manipulation of cold atoms," J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

J. Opt. Soc. Am (1)

J. Durnin, "Exact solutions for nondiffracting beams. 1. The scalar theory," J. Opt. Soc. Am 4, 651-654 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Nature (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett (1)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Other (1)

F. K. Fatemi and M. Bashkansky, "Generation of hollow beams by using a binary spatial light modulator," Opt. Lett. (to be published).
[PubMed]

Supplementary Material (3)

» Media 1: AVI (656 KB)     
» Media 2: AVI (1704 KB)     
» Media 3: AVI (2096 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Setup for the reflection-mode binary SLM. The λ/4 waveplate is used to compensate for the non-ideal phase retardance of the SLM. (b) Phase profile Ψn(ρ,ϕ)) for n = 16 (α=0). Black (white) represents 0 (π) phase retardance.

Fig. 2.
Fig. 2.

(a) Theoretical intensity profiles of the hollow laser beam at various propagation distances from the 300 mm imaging lens. (Movie: 0.7 Mb. Each frame represents 1.5 cm of propagation) (b) Theoretical (left) and experimental (right) intensity profiles at Z=27 cm.

Fig. 3.
Fig. 3.

Calculated (lines) and experimental (circles) radial intensity profiles of the hollow beam shown in Fig. 2 for various distances measured from the focal plane, in units of the peak intensity of the original Gaussian beam.

Fig. 4.
Fig. 4.

Atom distribution after release from the MOT. (a) Without hollow beam. (Movie: 1.7 Mb, each frame = 2ms delay). (b) With hollow beam. Delays from left to right are 0 ms, 14 ms, 20 ms. (Movie: 2.1 Mb, each frame = 2ms delay). The guide is horizontal, but due to the camera angle it appears tilted.

Fig. 5.
Fig. 5.

Relative number of atoms remaining in the imaging volume as a function of time after release of the MOT. The decay has a 1/e time constant of 10 ms (solid line). Error bars on relative atom number are within the symbol size.

Fig. 6.
Fig. 6.

Cross-sectional atom cloud profiles integrated along the axis of the hollow beam, normalized to the profile of the MOT at T=0 ms (dotted line). Data are presented for T=10 ms (solid lines) and T=20 ms (dashed lines).

Fig. 7.
Fig. 7.

CCD images of leaky hollow beams. a) Leaky hollow beam formed by a binary phase profile with no superimposed diffraction grating. b) Rotated leaky beam. c) Sum of (a) and (b). d) Cross-sectional atom number integrated along the axis of the hollow beam after 15 ms using the leaky beam (blue) and the time-averaged beam (red) compared to the static, filled beam (black).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U ( r ) = ħ Δ 2 ln [ 1 + I ( r ) I o 1 + 4 ( Δ Γ ) 2 ]
U ( r ) = ħ Δ 8 [ ( Γ Δ ) I ( r ) I o ]
Γ sp ( r ) = Γ 8 [ ( Γ Δ ) 2 I ( r ) I o ]

Metrics