Abstract

We present a detailed study of photophysical properties of single color centers in natural diamond samples emitting in the near infrared under optical excitation. Photoluminescence of these single emitters has several striking features, including narrow-band (FWHM 2 nm) fully polarized emission around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. Development of a triggered single-photon source relying on this single color center is discussed for application to quantum key distribution.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Grangier, B. Sanders, and J. Vučković editors, “Focus on Single Photons on Demand,” New J. Phys. 6 (2004).
    [CrossRef]
  2. C.H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing (Bangalore, India), 175-179 (1984).
  3. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  4. C. Gerry and P. Knight, Introductory quantum optics (Cambridge University Press, Cambridge, 2005).
  5. N. Lütkenhaus, “Estimates for practical quantum cryptography,” Phys. Rev. A 59, 3301-3320 (1999).
    [CrossRef]
  6. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
    [CrossRef] [PubMed]
  7. R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
    [CrossRef]
  8. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef] [PubMed]
  9. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504, 2005.
    [CrossRef] [PubMed]
  10. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173-179 (1986).
    [CrossRef]
  11. C.K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58-60 (1986).
    [CrossRef] [PubMed]
  12. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, (2004).
    [CrossRef]
  13. O. Alibart, D.B. Ostrowsky, P. Baldi, and S. Tanzilli, “High performance guided-wave asynchroneous heralded single-photon source,” Opt. Lett. 30, 1539-1541 (2005).
    [CrossRef] [PubMed]
  14. R. Alléaume, J.-F. Roch, D. Subacius, A. Zavriyev, and A. Trifonov, “Fiber-optics quantum cryptography with single photons,” AIP Conference Proceedings 734, 287-290 (2004).
    [CrossRef]
  15. R. Brouri, A. Beveratos, J.-Ph. Poizat, and P. Grangier, “Single-photon generation by pulsed excitation of a single dipole,” Phys. Rev. A 62, 063817-063823 (2000).
    [CrossRef]
  16. F. De Martini, G. Di Giuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
    [CrossRef] [PubMed]
  17. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single photon source,” Eur. Phys. J. D 18, 191 (2002).
    [CrossRef]
  18. A. M. Zaitsev, Optical properties of diamond, a data handbook (Springer, Berlin , 2000).
  19. T. Gaebel, I. Popa, A. Gruber,M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
    [CrossRef]
  20. J. Rabeau, Y. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 131926 (2005).
    [CrossRef]
  21. V. Nadolinny, A. Yelisseyev, J. Baker, M. Newton, D. Twitchen, S. Lawson, O. Yuryeva, and B. Feigelson, “A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with optical properties,” J. Phys. Condens. Matter. 11, 7357-7376 (1999).
    [CrossRef]
  22. Their are four covalent bonds between nitrogen atoms and the nickel defect, but the electrons shared in each bond come from one atom species only, which is the specificity of coordination-type bond.
  23. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual colored centers in diamond,” Opt. Lett. 25, 1294-1296 (2000).
    [CrossRef]
  24. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. Twitchen, A. Whitehead, S. Coe, and G. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond,” Science 297, 1670-1672 (2002).
    [CrossRef] [PubMed]
  25. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystal,” Phys. Rev. A 64, 061802 (2001).
    [CrossRef]
  26. S. Reynaud, “La fluorescence de résonance: étude par la méthode de l’atome habillé,” Ann. Phys. Fr. 8, 315-370 (1983).
  27. A. Yelisseyev, S. Lawson, I. Sildos, A. Osvet, V. Nadolinny, B. Feigelson, J.M. Baker, M. Newton, and O. Yuryeva, “Effect of HPHT annealing on the photoluminescence of synthetic diamonds grown in the Fe–Ni–C system,” Diamond Relat. Mater. 12, 2147-2168 (2003).
    [CrossRef]
  28. S. Kitson, P. Jonsson, J. Rarity, and P. Tapster, “Intensity fluctuation spectroscopy of small number of dye molecules in a microcavity,” Phys. Rev. A 58, 620-627 (1998).
    [CrossRef]
  29. F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett. 26, 1504-1506 (2001).
    [CrossRef]

Opt. Lett.

O. Alibart, D.B. Ostrowsky, P. Baldi, and S. Tanzilli, “High performance guided-wave asynchroneous heralded single-photon source,” Opt. Lett. 30, 1539-1541 (2005).
[CrossRef] [PubMed]

AIP 2004

R. Alléaume, J.-F. Roch, D. Subacius, A. Zavriyev, and A. Trifonov, “Fiber-optics quantum cryptography with single photons,” AIP Conference Proceedings 734, 287-290 (2004).
[CrossRef]

Ann. Phys. Fr.

S. Reynaud, “La fluorescence de résonance: étude par la méthode de l’atome habillé,” Ann. Phys. Fr. 8, 315-370 (1983).

Appl. Phys. Lett.

J. Rabeau, Y. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 131926 (2005).
[CrossRef]

Diamond Relat. Mater.

A. Yelisseyev, S. Lawson, I. Sildos, A. Osvet, V. Nadolinny, B. Feigelson, J.M. Baker, M. Newton, and O. Yuryeva, “Effect of HPHT annealing on the photoluminescence of synthetic diamonds grown in the Fe–Ni–C system,” Diamond Relat. Mater. 12, 2147-2168 (2003).
[CrossRef]

Eur. Phys. J. D

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single photon source,” Eur. Phys. J. D 18, 191 (2002).
[CrossRef]

Europhys. Lett.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173-179 (1986).
[CrossRef]

International Conference on Computers, Systems & Signal Processing 1984

C.H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing (Bangalore, India), 175-179 (1984).

J. Phys. Condens. Matter.

V. Nadolinny, A. Yelisseyev, J. Baker, M. Newton, D. Twitchen, S. Lawson, O. Yuryeva, and B. Feigelson, “A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with optical properties,” J. Phys. Condens. Matter. 11, 7357-7376 (1999).
[CrossRef]

New J. Phys.

T. Gaebel, I. Popa, A. Gruber,M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[CrossRef]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[CrossRef]

P. Grangier, B. Sanders, and J. Vučković editors, “Focus on Single Photons on Demand,” New J. Phys. 6 (2004).
[CrossRef]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. A

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystal,” Phys. Rev. A 64, 061802 (2001).
[CrossRef]

S. Kitson, P. Jonsson, J. Rarity, and P. Tapster, “Intensity fluctuation spectroscopy of small number of dye molecules in a microcavity,” Phys. Rev. A 58, 620-627 (1998).
[CrossRef]

R. Brouri, A. Beveratos, J.-Ph. Poizat, and P. Grangier, “Single-photon generation by pulsed excitation of a single dipole,” Phys. Rev. A 62, 063817-063823 (2000).
[CrossRef]

N. Lütkenhaus, “Estimates for practical quantum cryptography,” Phys. Rev. A 59, 3301-3320 (1999).
[CrossRef]

Phys. Rev. Lett.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504, 2005.
[CrossRef] [PubMed]

C.K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

F. De Martini, G. Di Giuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef] [PubMed]

Rev. Mod. Phys.

N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Science

J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. Twitchen, A. Whitehead, S. Coe, and G. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond,” Science 297, 1670-1672 (2002).
[CrossRef] [PubMed]

Other

Their are four covalent bonds between nitrogen atoms and the nickel defect, but the electrons shared in each bond come from one atom species only, which is the specificity of coordination-type bond.

C. Gerry and P. Knight, Introductory quantum optics (Cambridge University Press, Cambridge, 2005).

A. M. Zaitsev, Optical properties of diamond, a data handbook (Springer, Berlin , 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Fluorescence intensity raster scan of a natural diamond sample showing luminescence from an isolated color center. One APD output in the HBT setup gives maximum counting rate ~ 4 × 104 counts/s. (b) Photoluminescence spectrum with 10 s integration for the single emitter observed in Fig. 1(a). This spectrum has been corrected for the quantum efficiency of the CCD, which varies from 53 to 85% in the 740–840 nm range considered. The narrow peak (1) at 782 nm (~ 2 nm FWHM) is the ZPL of the Nickel-Nitrogen related defect [19]. The sharp peak (2) at 756 nm is related to the one-phonon Raman scattering line of the diamond lattice with 1332 cm-1 frequency shift. Inset: ZPL, more clearly showing phonon wing intensity.

Fig. 2.
Fig. 2.

Three-level system with corresponding decay and intersystem crossing rates.

Fig. 3.
Fig. 3.

(a) Photon coincidence number c(t) (right scale) and normalized intensity correlation function g (2)(t) (left scale) recorded for a single emitter at short time scales (∣t∣ ≲ 20 ns). Excitation was carried out at 9 mW, the maximum available cw power. Integration duration was T = 590 s, R 1 ≃ 37000 counts/s, R 2 ≃ 48700 counts/s, and time bin w = 0.17 ns. Red dots represent experimental data, while the solid blue line is a convolution of Eq. (7) with the measured instrumental response function, with adjusted parameters a and λ 1. (b) Evolution of parameter λ 1 (red dots) as a function of excitation power with linear fitting (in blue), according to Eq. (4).

Fig. 4.
Fig. 4.

(a) Number of photon coincidences c(t) (right scale) and normalized intensity correlation function g (2)(t) (right scale) for a single emitter over a long time scale (∣t∣ ≳ 20 ns) with excitation power 9 mW, integration duration T = 605 s, R 1 ≃ 38600 counts/s, R 2 ≃ 33400 counts/s, and time bin w = 2.3 ns. Red dots represent experimental data, while the solid blue line fit is a convolution of Eq. (8) with measured instrumental response function. The dashed line indicates normalization corresponding to Poissonian photon-number statistics. The minimum value of g (2) at t = 0 appears higher than in Fig. 3(a) due to larger time bin for the histogram plot. (b) Evolution of parameter λ 2 (red dots) as a function of the excitation power, with fit (in blue) according to Eq. (5).

Fig. 5.
Fig. 5.

Photoluminescence intensity measurement (circles with error bars) given by counting rate sum for both APDs, vs. excitation laser power. Fit given by Eq. (10) incorporates rate values rmn calculated from measurements of λ 1 and λ 2. The fit is therefore achieved with a single free parameter, corresponding to the overall efficiency ηdet × η Q.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ p 1 ˙ = r 12 p 1 + r 21 p 2 + r 31 p 3 p 2 ˙ = r 12 p 1 ( r 21 + r 23 ) p 2 p 3 ˙ = r 23 p 2 r 31 p 3
g ( 2 ) ( t ) I ( 0 ) I ( t ) I ( t ) 2
g ( 2 ) ( t ) = p 2 ( 0 ; t ) / p 2 ( ) = 1 ( 1 + a ) e λ 1 t + ae λ 2 t ,
λ 1 = r 12 + r 21 ,
λ 2 = r 31 + r 23 r 12 / ( r 12 + r 21 ) ,
a = r 12 r 23 / [ r 31 ( r 12 + r 21 ) ] ,
g ( 2 ) ( t ) 1 ( 1 + a ) e λ 1 t .
g ( 2 ) ( t ) 1 + a e λ 2 t .
g ( 2 ) ( t ) = c ( t ) R 1 R 2 Tw .
R = η det η Q r 21 ( r 21 / r 12 + r 23 / r 31 + 1 ) ,

Metrics