Abstract

We report recent progress on fabrication of solid core microstructured fibers in chalcogenide glass. Several complex and regular holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. We demonstrate that the “Stack & Draw” procedure is a powerful tool against crystallisation when used with a very stable chalcogenide glass. For a 3 ring multimode Holey Fiber, we measure the mode field diameter of the fundamental mode and compare it successfully with calculations using the multipole method. We also investigate, via numerical simulations, the behaviour of fundamental mode guiding losses of microstructured fibers as a function of the matrix refractive index, and quantify the advantage obtained by using a high refractive index glass such as chalcogenide instead of low index glass.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232-237 (2000).
    [CrossRef]
  2. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064µm,” Opt. Mater. 25, 231-237 (2004).
    [CrossRef]
  3. R. E. Slusher, Gadi Lenz, Juan Hodelin, Jasbinder Sanghera, L. Brandon Shaw and Ishwar D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).
  4. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adam, K. Staubmann and T. Bauman, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252-259 (2004).
    [CrossRef]
  5. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Yu. N. Pyrkov, and B. I. Glagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326 & 327, 301-305 (2003).
  6. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28, 5122 (1989).
  7. T. A. Birks, P. J. Roberts, P. St. J. Russel, D. M. Atkin, and T. J. Sheperd, “Full 2D photonic bandgap in silica/air structures,” Electron. Lett. 31, 1941-1943 (1995).
    [CrossRef]
  8. T. M. Monro, and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” Contemp. R. Phys. 4, 175-186 (2003).
  9. G. Renversez, B. Kuhlmey and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
  10. T. A. Birks, J. C. Knight, P. St. J. Russel, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
  11. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide Holey Fibres,” Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  12. L. B. Shaw, P. A. Thielen, F. H. Kunk, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se Photonic Crystal Fiber,” in Advanced Solid State Photonics., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, DC., 2005), pp. 864-868.
  13. Y. Guimond, J. L. Adam, A. M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, ”Optical properties of antimony-stabilised sulphide glasses doped with Dy and Er ions,” J. Non-Cryst. Solids, 256 & 257, 378-382 (1999).
  14. G. Renversez, F. Bordas and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrice refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005).
  15. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I Formulation,” J. Opt. Soc. Am. B 19, 2322- 2330 (2002).
  16. B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers II: Implementation and results,” J. Opt. Soc. Am. B 10, 2331-2340 (2002).
  17. F. Bordas, L. Provino, and G. Renversez, “Fibres optiques microstructurées de haut indice : pertes et dispersion chromatique du fondamental et cutoff du second mode, comparaison avec la silice," Journées Nationales Optique Guidée, Société Française d'Optique, Paris, France, 230-232 (2004).

Appl. Opt.

Contemp. R. Phys.

T. M. Monro, and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” Contemp. R. Phys. 4, 175-186 (2003).

Electron. Lett.

T. A. Birks, P. J. Roberts, P. St. J. Russel, D. M. Atkin, and T. J. Sheperd, “Full 2D photonic bandgap in silica/air structures,” Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide Holey Fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

J. Non-Cryst. Solids

Y. Guimond, J. L. Adam, A. M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, ”Optical properties of antimony-stabilised sulphide glasses doped with Dy and Er ions,” J. Non-Cryst. Solids, 256 & 257, 378-382 (1999).

J. Non-Cryst. Solids

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Yu. N. Pyrkov, and B. I. Glagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326 & 327, 301-305 (2003).

J. Non-Cryst. Solids

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

J. Opt. Soc. Am.

R. E. Slusher, Gadi Lenz, Juan Hodelin, Jasbinder Sanghera, L. Brandon Shaw and Ishwar D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).

J. Opt. Soc. Am. B

Journées Nationales Optique Guidée

F. Bordas, L. Provino, and G. Renversez, “Fibres optiques microstructurées de haut indice : pertes et dispersion chromatique du fondamental et cutoff du second mode, comparaison avec la silice," Journées Nationales Optique Guidée, Société Française d'Optique, Paris, France, 230-232 (2004).

Opt. Lett.

Opt. Mater.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064µm,” Opt. Mater. 25, 231-237 (2004).
[CrossRef]

OSA Proceedings Series

L. B. Shaw, P. A. Thielen, F. H. Kunk, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se Photonic Crystal Fiber,” in Advanced Solid State Photonics., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, DC., 2005), pp. 864-868.

Sens. Actuators B

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adam, K. Staubmann and T. Bauman, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252-259 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics