A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72, 161316(R) (2005).
[Crossref]
A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E 71, 026605 (2005).
[Crossref]
O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[Crossref]
M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Exp. 13, 3348–3354 (2005).
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
R. Z. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
N. Moll and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[Crossref]
J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004).
[Crossref]
D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004).
[Crossref]
M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching,” Phys. Rev. A 69, 053810 (2004).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[Crossref]
[PubMed]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp. 11, 1378–1384 (2003).
[Crossref]
Z. Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
[Crossref]
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003).
[Crossref]
[PubMed]
O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002).
[Crossref]
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref]
[PubMed]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability and Coupling Efficiency,” Phys. Rev. B 54, 7837–8942 (1996).
[Crossref]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]
G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans Electromagn. Compat. EMC-23, 377–382 (1981).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003).
[Crossref]
[PubMed]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
N. Moll and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[Crossref]
M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Exp. 13, 3348–3354 (2005).
[Crossref]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic gaps for electromagnetic waves in periodic dielectric structures: Discovery of the diamond structure,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., (Plenum, New York, 1993).
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72, 161316(R) (2005).
[Crossref]
A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E 71, 026605 (2005).
[Crossref]
A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[Crossref]
[PubMed]
A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999).
[Crossref]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp. 11, 1378–1384 (2003).
[Crossref]
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability and Coupling Efficiency,” Phys. Rev. B 54, 7837–8942 (1996).
[Crossref]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching,” Phys. Rev. A 69, 053810 (2004).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp. 11, 1378–1384 (2003).
[Crossref]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
Z. Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic gaps for electromagnetic waves in periodic dielectric structures: Discovery of the diamond structure,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., (Plenum, New York, 1993).
K. Iizuka, Elements of Photonics (Wiley-Interscience, New York, 2002).
J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004).
[Crossref]
M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Exp. 13, 3348–3354 (2005).
[Crossref]
D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004).
[Crossref]
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability and Coupling Efficiency,” Phys. Rev. B 54, 7837–8942 (1996).
[Crossref]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E 71, 026605 (2005).
[Crossref]
A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72, 161316(R) (2005).
[Crossref]
O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[Crossref]
R. Z. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]
M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching,” Phys. Rev. A 69, 053810 (2004).
[Crossref]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003).
[Crossref]
[PubMed]
A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[Crossref]
[PubMed]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002).
[Crossref]
O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref]
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
Z. Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
[Crossref]
D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
N. Moll and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans Electromagn. Compat. EMC-23, 377–382 (1981).
[Crossref]
A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999).
[Crossref]
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004).
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004).
[Crossref]
J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp. 11, 1378–1384 (2003).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic gaps for electromagnetic waves in periodic dielectric structures: Discovery of the diamond structure,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., (Plenum, New York, 1993).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[Crossref]
O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003).
[Crossref]
[PubMed]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[Crossref]
[PubMed]
O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002).
[Crossref]
O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref]
[PubMed]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability and Coupling Efficiency,” Phys. Rev. B 54, 7837–8942 (1996).
[Crossref]
R. Z. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005)
[Crossref]
M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]
C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004).
[Crossref]
A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999).
[Crossref]
N. Moll and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[Crossref]
J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004).
[Crossref]
G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans Electromagn. Compat. EMC-23, 377–382 (1981).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004).
[Crossref]
R. Hillebrand, S. Senz, W. Hergert, and U. GÖsele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003).
[Crossref]
M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
[Crossref]
D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature (London) 390, 671–671 (1997).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials 3, 444–447 (2004).
[Crossref]
[PubMed]
J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp. 11, 1378–1384 (2003).
[Crossref]
M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Exp. 13, 3348–3354 (2005).
[Crossref]
S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures - Fundamentals and Applications 1, 37–42 (2003).
[Crossref]
M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching,” Phys. Rev. A 69, 053810 (2004).
[Crossref]
R. Z. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]
M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[Crossref]
P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability and Coupling Efficiency,” Phys. Rev. B 54, 7837–8942 (1996).
[Crossref]
A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72, 161316(R) (2005).
[Crossref]
A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E 71, 026605 (2005).
[Crossref]
O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[Crossref]
O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002).
[Crossref]
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref]
[PubMed]
S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[Crossref]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003).
[Crossref]
[PubMed]
A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[Crossref]
[PubMed]
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[Crossref]
O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref]
[PubMed]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994).
[Crossref]
Strictly speaking, the two bands can be represented by two bases polarized in any two orthogonal directions in the x-y plane since they are doubly degenerate. However, it is more convenient to consider them as polarized along the x- and y- directions, respectively, as in the text.
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic gaps for electromagnetic waves in periodic dielectric structures: Discovery of the diamond structure,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., (Plenum, New York, 1993).
E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).
C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, Dordrecht, 2001).
K. Iizuka, Elements of Photonics (Wiley-Interscience, New York, 2002).
N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mat. (in press).
M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).