Abstract

Terahertz transmission filters have been manufactured by perforating metal films with various geometric shapes using femtosecond laser machining. Two dimensional arrays of square, circular, rectangular, c-shaped, and epsilon-shaped holes all support over 99% transmission at specific frequencies determined by geometric shape, symmetry, polarization, and lattice constant. Our results show that plasmonic structures with different geometric shaped holes are extremely versatile, dependable, easy to control and easy to make terahertz filters.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature (London) 391, 667 (1998).
    [CrossRef]
  2. L. Salomon, F. Grillot, A. V. Zayats, and F. Fronel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
    [CrossRef] [PubMed]
  3. S. A. Maier, G. K. Pieter, A. A. Harry, M. Sheffer, H. Elad, E. K. Bruce, and A. G. R. Ari, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229 (2003).
    [CrossRef] [PubMed]
  4. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Letters 4, 1561 (2004).
    [CrossRef]
  5. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93, 243901 (2004).
    [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  7. J. T. Shen, R. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef] [PubMed]
  8. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902 (2005).
    [CrossRef] [PubMed]
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
    [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  11. A. Nahata, and H. Cao, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a>.
    [CrossRef] [PubMed]
  12. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef] [PubMed]
  13. F. Yang, and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  14. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
    [CrossRef] [PubMed]
  15. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
    [CrossRef] [PubMed]
  16. J. A. Porto, F. J. Garicia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  17. S. Astilean, R. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265 (2000).
    [CrossRef]
  18. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  19. F. J. Garcia-Vidal, and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  20. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
    [CrossRef] [PubMed]
  21. L. M. Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619</a>.
    [CrossRef] [PubMed]
  22. F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
    [CrossRef]
  23. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  24. A. Degiron, and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
    [CrossRef]
  25. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  26. R. Gordon, and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933-1938 (2005), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1933">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1933</a>.
    [CrossRef] [PubMed]
  27. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
    [CrossRef]
  28. W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72, 153406 (2005).
    [CrossRef]
  29. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
    [CrossRef]
  30. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  31. H. Lochbihler, and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32, 3459 (1993).
    [CrossRef] [PubMed]

Appl. Opt. (1)

J. Opt. A: Pure Appl. Opt. (1)

A. Degiron, and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
[CrossRef]

Nano Letters (1)

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Letters 4, 1561 (2004).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature (London) 391, 667 (1998).
[CrossRef]

Nature Materials (1)

S. A. Maier, G. K. Pieter, A. A. Harry, M. Sheffer, H. Elad, E. K. Bruce, and A. G. R. Ari, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Astilean, R. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (5)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

F. J. Garcia-Vidal, and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72, 153406 (2005).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[CrossRef]

Phys. Rev. E (1)

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett. (13)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garicia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

F. Yang, and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. Fronel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[CrossRef] [PubMed]

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93, 243901 (2004).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. T. Shen, R. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902 (2005).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) SEM images of the plamonic structures perforated with various shapes. (b) The experimental setup. (c) Transmission spectra measured after passing through a circular hole sample (blue) and after another nearly identical one (red). The insets show time traces for the two cases.

Fig. 2.
Fig. 2.

(a) Transmission spectra for samples with rectangular arrays of holes with varying length b. (b) Spectral peak positions (circles) plotted versus the half wavelength cutoff frequency. The blue line represents the first Rayleigh minimum. (c) Theoretical calculations by using the perfect conductor model. (d) Polarization dependence for the rectangle hole sample with the width to length ratio of 2 to 3. Two resonance frequencies of 0.560 and 0.734 THz appear at the perpendicular polarization angles of 0 and 90° respectively.

Fig. 3.
Fig. 3.

(a) A contour plot of the incident angle (θ) dependent transmission for the rectangle hole sample with width to length ratio of 1 to 8. (b) Angle dependent transmission for the square hole sample. (c) Normal incidence transmission spectra at the horizontal (blue line) and vertical (red line) polarizations for the c-shaped sample. (d), (e) Angle dependent transmissions for the c- and epsilon-shaped samples. (f) Transmission spectrum for the sample consisted of rectangular holes with three different lengths, 390, 650 and 1500 μm, at normal incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 0 = ab d x d y π [ 2 k π sin ( μh ) ( W 2 ( k π ) 2 ) + 2 W cos ( μh ) ]
W = mn = + ( χ mn 2 + α m 2 ) K mn J mn χ mn k

Metrics