Abstract

We have investigated the physical and optical properties of the left-handed chiral dopant ZLI-811 mixed in a nematic liquid crystal (LC) host BL006. The solubility of ZLI-811 in BL006 at room temperature is ~24 wt%, but can be enhanced by increasing the temperature. Consequently, the photonic band gap of the cholesteric liquid crystal (CLC) mixed with more than 24 wt% chiral dopant ZLI-811 is blue shifted as the temperature increases. Based on this property, we demonstrate two applications in thermally tunable band-pass filters and dye-doped CLC lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Y. Huang, K. Y. Fu, K. Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11, 560-565 (2003). <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-560>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-560</a>.
    [CrossRef] [PubMed]
  2. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. Part 1, 43, 7083-7086 (2004).
    [CrossRef]
  3. B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73-81, (2001).
    [CrossRef]
  4. M. Iwamoto, C. X. Wu, and Z. C. Ou-Yang, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285, 306-312 (1998).
    [CrossRef]
  5. N. Scaramuzza, C. Ferrero, B. V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77, 572-576 (1995).
    [CrossRef]
  6. X. Y. Huang, D. K. Yang; and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” App. Phys. Lett. 67, 1211-1213 (1995).
    [CrossRef]
  7. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Pototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491-2493 (2004).
    [CrossRef]
  8. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped choelsteric liquid crystals,” Appl. Phys. Lett. 83, 5353-5355 (2003).
    [CrossRef]
  9. I. Musevic, M. Skarabot, G. Heppke, and H. T. Nguyen, “Temperature dependence of the helical period in the ferrielectric smectic phases of MHPOBC and 10OTBBB1M7,” Liq. Cryst. 29, 1565-1568 (2002).
    [CrossRef]
  10. F. Zhang and D. K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic A phase transition,” Liq. Cryst. 29, 1497-1501 (2002).
    [CrossRef]
  11. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
    [CrossRef]
  12. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24 (2004).
    [CrossRef]
  13. G. Gottarelli and G. P. Spada, “Induced cholesteric mesophases–origin and applications,” Mol. Cryst. Liq. Cryst. 123, 377-388 (1985).
    [CrossRef]
  14. Y. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable lasing emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
    [CrossRef]

App. Phys. Lett.

X. Y. Huang, D. K. Yang; and J. W. Doane, “Transient dielectric study of bistable reflective cholesteric displays and design of rapid drive scheme,” App. Phys. Lett. 67, 1211-1213 (1995).
[CrossRef]

Appl. Phys. Lett.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Pototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491-2493 (2004).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped choelsteric liquid crystals,” Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable lasing emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

Chem. Phys. Lett.

M. Iwamoto, C. X. Wu, and Z. C. Ou-Yang, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285, 306-312 (1998).
[CrossRef]

J. Appl. Phys.

N. Scaramuzza, C. Ferrero, B. V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77, 572-576 (1995).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24 (2004).
[CrossRef]

Jpn. J. Appl. Phys. Part 1

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. Part 1, 43, 7083-7086 (2004).
[CrossRef]

Liq. Cryst.

I. Musevic, M. Skarabot, G. Heppke, and H. T. Nguyen, “Temperature dependence of the helical period in the ferrielectric smectic phases of MHPOBC and 10OTBBB1M7,” Liq. Cryst. 29, 1565-1568 (2002).
[CrossRef]

F. Zhang and D. K. Yang, “Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic A phase transition,” Liq. Cryst. 29, 1497-1501 (2002).
[CrossRef]

Mol. Cryst. Liq. Cryst.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73-81, (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst.

G. Gottarelli and G. P. Spada, “Induced cholesteric mesophases–origin and applications,” Mol. Cryst. Liq. Cryst. 123, 377-388 (1985).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The transmission spectra of the CLC cells mixed with 22 wt% ZLI-811 in BL006 (red line) and ZLI-4608 (black line) hosts, respectively.

Fig. 2.
Fig. 2.

Experimental and simulated results of the central wavelength of the CLC PBG with respect to the chiral dopant concentration in two different LC hosts: BL006 and ZLI-4608.

Fig. 3.
Fig. 3.

The temperature dependent central wavelength of the CLC PBG.

Fig. 4.
Fig. 4.

(a) The microscope photos of the CLCs with different chiral dopant ZLI-811 concentrations: a) 24 wt%, b) 28 wt%, c) 32 wt%, and d) 34 wt%; (b) the microscope photos of the CLCs with 34 wt% chiral dopant ZLI-811 at different temperature.

Fig. 5.
Fig. 5.

Temperature dependent CLC bandpass filters.

Fig. 6.
Fig. 6.

Temperature dependent (normalized) laser emission wavelength. The CLC sample consists of 34 wt% ZLI-811 in BL-006 host, plus 1 wt% DCM dye. The pumping laser wavelength is λ=532 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = λ o n ,
HTP = 1 ( C × P ) ,
λ o = nP = n HTP × C

Metrics