Abstract

We propose an optical flip-flop circuit composed of two-port resonant-tunneling filters based on a two-dimensional photonic crystal slab with a triangular air-hole lattice. This circuit can function as an optical digital circuit that synchronizes input data with a clock. In this report, we demonstrate that this circuit can achieve a fast operating speed with a response time of about 10 ps and a low operating power of 60 mW by employing a two-dimensional FDTD calculation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
    [CrossRef]
  2. Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253 (2004)
    [CrossRef]
  3. D. N. Maywar, G. P. Agrawal, and Y. Nakano, "Robust optical control of an optical-amplifer-based flip-flop," Opt. Express 6, 75 (2000).
    [CrossRef] [PubMed]
  4. R. Clavero, F. Ramos, "All-optical fli-flop based on a single SOA-MZI," IEEE Photonics Technol. Lett. 17, 1041 (2005)
    [CrossRef]
  5. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
    [CrossRef]
  6. Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  7. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  8. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
    [CrossRef]
  9. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual meeting of IEEE LEOS, 214, Tucson, USA (2003)
  10. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
    [CrossRef] [PubMed]
  11. A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
    [CrossRef]
  12. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  13. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  14. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683 (2000)
    [CrossRef]
  15. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
    [CrossRef]
  16. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
    [CrossRef]

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

2005 (5)

R. Clavero, F. Ramos, "All-optical fli-flop based on a single SOA-MZI," IEEE Photonics Technol. Lett. 17, 1041 (2005)
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253 (2004)
[CrossRef]

2003 (3)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
[CrossRef]

2002 (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

2000 (2)

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "Robust optical control of an optical-amplifer-based flip-flop," Opt. Express 6, 75 (2000).
[CrossRef] [PubMed]

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683 (2000)
[CrossRef]

1999 (1)

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Agrawal, G. P.

Akahane, Y.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Centeno, E.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683 (2000)
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Clavero, R.

R. Clavero, F. Ramos, "All-optical fli-flop based on a single SOA-MZI," IEEE Photonics Technol. Lett. 17, 1041 (2005)
[CrossRef]

Dulk, M.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Ellis, A. D.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
[CrossRef]

Felbacq, D.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683 (2000)
[CrossRef]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Fischer, S.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Gamper, E.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Gini, E.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Hunziker, W.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Joannopoulos, J. D.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Kim, G.

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Kira, G.

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Kondo, S.

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Maywar, D. N.

Melchior, H.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Nakano, Y.

Nesset, D.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Ramos, F.

R. Clavero, F. Ramos, "All-optical fli-flop based on a single SOA-MZI," IEEE Photonics Technol. Lett. 17, 1041 (2005)
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Song, B-S.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 12, 1551 (2004).
[CrossRef] [PubMed]

Tsuchizawa, T.

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Ueno, Y.

Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253 (2004)
[CrossRef]

Vogt, W.

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Yamada, K.

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
[CrossRef]

Appl. Phys. Lett. (4)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739 (2003)
[CrossRef]

Electron. Lett. (1)

S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, "Optical 3R regenerator for 40 Gbit/s networks," Electron. Lett. 35, 2047 (1999)
[CrossRef]

IEEE Photonics Technol. Lett. (1)

R. Clavero, F. Ramos, "All-optical fli-flop based on a single SOA-MZI," IEEE Photonics Technol. Lett. 17, 1041 (2005)
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B-S. Song, and S. Noda, "High-Q Photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253 (2004)
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683 (2000)
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Phys. Rev. E (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002)
[CrossRef]

Proc. SPIE (1)

A. Shinya, S. Mitsugi, E. Kuramochi, T. Tanabe, G. Kim, G. Kira, S. Kondo, K. Yamada, T. Watanabe, T. Tsuchizawa and M. Notomi, "Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs," Proc. SPIE 5729,72 (2005)
[CrossRef]

Other (1)

S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual meeting of IEEE LEOS, 214, Tucson, USA (2003)

Supplementary Material (1)

» Media 1: GIF (1979 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of a flip-flop circuit based on a 2D-PhC with a triangular air-hole lattice. The lattice constant a is 400 nm, the air-hole diameter is 0.55a, and the effective refractive index of the slab is 2.78. The two resonators (C1 and C2) have one identical resonant frequency (wavelength λ2=1548.48 nm) and two different resonant frequencies (wavelength λ1= 1493.73 nm for C1 and wavelength λ3 = 1463.36 nm for C2). Their quality factors for λ1, λ2, and λ3 are Q1=6100, Q2=4500 and Q3 = 4100, respectively. The widths of P1 and P3 are W 0 =a√3 and 0.8W0, respectively. The widths are tuned so that the λ1 and λ3 lights can propagate in all the waveguides and the λ2 light can propagate only in P1 and P2.

Fig. 2.
Fig. 2.

Equivalent circuits of the flip-flop circuit for each resonant frequency. F1, F2 and F3 are the equivalent two-port resonant tunneling filters for input lights of λ1 and λ2, and λ3, respectively.

Fig. 3.
Fig. 3.

Mechanism of the flip-flop circuit composed of F1, F2 and F3. (a) Hysteresis characteristics of F2 and F3. (b) Time chart of input and output signals. (1) t = 0. λ3 light is inputted. C2 stays in the OFF state. (2) t = t1. λ2 light is added in the middle of the first period (0 < t < T), but C1 and C2 do not turn ON. (3) t = T. λ3 light is cut off and λ1 light is inputted. Since C1 turns ON, the λ2 light reaches C2. (4) t = 2T. λ1 light is cut off and λ3 is inputted. Since C1 stays in the ON state and λ2 and λ3 lights are inputted into C2, C2 turns ON and λ3 light is outputted. (5) t = t3. Since C2 stays in the ON state after the λ2 light is cut off, λ3 light is outputted. (6) t = 3T. λ3 light is cut off. C2 turns OFF.

Fig. 4.
Fig. 4.

Equivalent circuit. The switch opens when two signals are inputted and stays in the ON state until both signals are cut off.

Fig. 5.
Fig. 5.

Bistable characteristics of F2 and F3. The Kerr coefficient is χ/ε 0 = 4.1×10-19[m2/V2], which corresponds to a nonlinear refractive index of n 2 =1.5×;10-17[m2/W] in our calculation method. The dotted line is an input signal, and the solid and dashed lines are the output signals of F2 and F3, respectively. The wavelength detuning values of F2 and F3 are +0.43 and +0.92 nm, respectively.

Fig. 6.
Fig. 6.

Clock operation of the flip-flop circuit. The λ3 clock pulse (CLOCK) is inputted from P3. And the data signal (DATA) of NRZ λ1 light and the λ2 inversed CLOCK (CLOCK¯) are inputted from P1. The detuning values of F1, F2 and F3 are +0.43, +0.43 and +0.92 nm, respectively, and the input powers of the λ1, λ2 and λ3 lights are all 61 mW. (a) Time chart of the circuit. This figure shows that this circuit automatically synchronizes the NRZ input DATA with the internal clock, and regenerates the ideal DATA with the RZ format. (b) (1.93 MB) Movie of the field profile in the shaded time region in Fig. 6(a). There are three CLOCK pulses, but only the second one is outputted. The system response time is about 10 ps. [Media 1]

Metrics