Abstract

A model for exposing and developing photoresist using the reaction mechanism of physics and the chemistry of resist is built, and the micropatterns of recording marks on a stamper are calculated. Compared with our experimental results, the deviation of pit width in simulation is less than 8%. When the width of recording marks is varied by modulating laser power during exposure, a multilevel (ML) read-only disk can be achieved as a result of the corresponding readout signal. Experimental results show that an 8-level read-only optical disk can be realized. The model of mastering serves well for the development of novel ML disks in which the integration of conventional run-length deviations technologies can greatly increase recording density.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shimizu, K. Sakagami, and Y. Kadokawa, "Multi-level recording on phase-change optical discs," Ricoh Technical Report No. 28, 34-41 (2002).
  2. S. H. Jiang and F. H. Lo, "PRML process of multilevel run-length-limited modulation recording on optical disc," IEEE Trans. Mag. 41, 1070-1072 (2005).
    [CrossRef]
  3. S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
    [CrossRef]
  4. F. H. Dill, "Optical lithography," IEEE Trans. Electron. Devices 22,No. 7, 440-444 (1975).
    [CrossRef]
  5. F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
    [CrossRef]
  6. L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to Microlithography (Academic, Washington, 1983).
    [CrossRef]
  7. C. A. Mack, "PROLITH: A Comprehensive Optical Lithography Model," in Optical Microlithography IV, Harry L. Stover, ed., Proc. SPIE 538, 207-220 (1985).
  8. A. Boivin and E. Wol, "Electromagnetic field in the neighborhood of the focus of a coherent beam," Phys. Rev. 138,1561-1565 (1965).
    [CrossRef]
  9. P. H. Bernlng, "Theory and calculations of optical thin films," in Physics of Thin Films, Films, Vol. I, George Hass, ed., (Academic, New York, 1963), pp. 69-121.
  10. H. H. Hopkins, "Diffraction theory of laser read-out systems for optical video discs," J. Opt. Soc. Am. 69,4-24 (1979).
    [CrossRef]
  11. S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).
  12. A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
    [CrossRef]

2005 (2)

S. H. Jiang and F. H. Lo, "PRML process of multilevel run-length-limited modulation recording on optical disc," IEEE Trans. Mag. 41, 1070-1072 (2005).
[CrossRef]

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

2002 (1)

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

1997 (1)

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

1979 (1)

1975 (2)

F. H. Dill, "Optical lithography," IEEE Trans. Electron. Devices 22,No. 7, 440-444 (1975).
[CrossRef]

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

1965 (1)

A. Boivin and E. Wol, "Electromagnetic field in the neighborhood of the focus of a coherent beam," Phys. Rev. 138,1561-1565 (1965).
[CrossRef]

Boivin, A.

A. Boivin and E. Wol, "Electromagnetic field in the neighborhood of the focus of a coherent beam," Phys. Rev. 138,1561-1565 (1965).
[CrossRef]

Dill, F. H.

F. H. Dill, "Optical lithography," IEEE Trans. Electron. Devices 22,No. 7, 440-444 (1975).
[CrossRef]

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

Hopkins, H. H.

Jiang, S. H.

S. H. Jiang and F. H. Lo, "PRML process of multilevel run-length-limited modulation recording on optical disc," IEEE Trans. Mag. 41, 1070-1072 (2005).
[CrossRef]

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

Johnson, B.V.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Kadokawa, Y.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Kuo, J. W.

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

Lo, F. H.

S. H. Jiang and F. H. Lo, "PRML process of multilevel run-length-limited modulation recording on optical disc," IEEE Trans. Mag. 41, 1070-1072 (2005).
[CrossRef]

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

Long, T.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Ma, C. P.

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

McDermott, G. A.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Neureuther, A. R.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

O’Neill, M. P.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Pietrzyk, C.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Sakagami, K.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Shafaat, T.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Shimizu, A.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Spielman, S.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Takatsu, K.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Takeuchi, K.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Tashiro, H.

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

Tuttle, J. A.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

Walker, E. J.

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

Warland, D. K.

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Wol, E.

A. Boivin and E. Wol, "Electromagnetic field in the neighborhood of the focus of a coherent beam," Phys. Rev. 138,1561-1565 (1965).
[CrossRef]

IEEE Trans. Electron. Devices (2)

F. H. Dill, "Optical lithography," IEEE Trans. Electron. Devices 22,No. 7, 440-444 (1975).
[CrossRef]

F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, "Modeling projection printing of positive photoresists," IEEE Trans. Electron. Devices,  22, No. 7, 456-464 (1975).
[CrossRef]

IEEE Trans. Mag. (1)

S. H. Jiang and F. H. Lo, "PRML process of multilevel run-length-limited modulation recording on optical disc," IEEE Trans. Mag. 41, 1070-1072 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (2)

A. Shimizu, K. Sakagami, Y. Kadokawa, K. Takeuchi, H. Tashiro, and K. Takatsu, "Data detection using pattern recognition for multi-level optical recording," Jpn. J. Appl. Phys. 41,1745-1746 (2002).
[CrossRef]

S. H. Jiang, J. W. Kuo, C. P. Ma, and F. H. Lo, "Signals from multi-level run-length-limited modulation recordings using partial response maximum likelihood," Jpn. J. Appl. Phys. 44, 3453-3456 (2005).
[CrossRef]

Phys. Rev. (1)

A. Boivin and E. Wol, "Electromagnetic field in the neighborhood of the focus of a coherent beam," Phys. Rev. 138,1561-1565 (1965).
[CrossRef]

Proc. SPIE (1)

S. Spielman, B.V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, and T. Long, "Using pit-depth modulation to increase capacity and data transfer rate in optical discs," in Optical Data Storage, Proc. SPIE 3109,11-18 (1997).

Other (4)

A. Shimizu, K. Sakagami, and Y. Kadokawa, "Multi-level recording on phase-change optical discs," Ricoh Technical Report No. 28, 34-41 (2002).

P. H. Bernlng, "Theory and calculations of optical thin films," in Physics of Thin Films, Films, Vol. I, George Hass, ed., (Academic, New York, 1963), pp. 69-121.

L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to Microlithography (Academic, Washington, 1983).
[CrossRef]

C. A. Mack, "PROLITH: A Comprehensive Optical Lithography Model," in Optical Microlithography IV, Harry L. Stover, ed., Proc. SPIE 538, 207-220 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Coordinate system of incident laser beam.

Fig. 2.
Fig. 2.

Distribution of normalized light intensity.

Fig. 3.
Fig. 3.

Diagram of substrate and overlaying layers in computation.

Fig. 4.
Fig. 4.

Simulation result of an 1 1T pit recording mark.

Fig. 5.
Fig. 5.

Mean width of pit vs. laser power. The curve depicts the simulation results.

Fig. 6.
Fig. 6.

The AFM photographs of a conventional DVD (a) and ML disk modulated by DVD (b).

Fig. 7.
Fig. 7.

Normalized mean peak-peak amplitude of readout signal vs. recording laser power. The curve depicts the simulation results.

Tables (1)

Tables Icon

Table 1. Parameters used in the experiment.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( p , t ) = Re [ e 0 ( p ) exp ( iwt ) ] ,
H 0 ( p , t ) = Re [ h 0 ( p ) exp ( iwt ) ] .
I ( v ) = 2 C 2 [ 2 H 1 2 0 v + H 0 2 ( 0 , v ) + H 2 2 ( 0 , v ) ] ,
v = sin α '
k = 2 π λ .
C = kf a 0 2 .
H 0 ( 0 , v ) = 0 α ' ( cos θ ) 1 2 sin θ ( 1 + cos θ ) J 0 ( v sin θ sin α ' )
H 2 ( 0 , v ) = 0 α ' ( cos θ ) 1 2 sin θ ( 1 cos θ ) J 2 ( v sin θ sin α ' ) ,
H 1 ( 0 , v ) = 0 α ' ( cos θ ) 1 2 sin 2 θ J 1 ( v sin θ sin α ' ) .
α ρ z t = AM ρ z t + B ,
N = n ik ,
k = αλ 4 π .
N = n i λ [ AM ρ z t + B ] 4 π .
I ρ z t z = αI ρ z t
M ρ z t t = I ρ z t M ρ z t C
I ρ j = I 0 ( ρ ) A ρj α ρj δ z j .
I ρ 0 t = I ( ρ )
I ρ z 0 = I ( ρ ) exp [ ( A + B ) z ] ,
M ρ 0 t = exp [ I ( ρ ) Ct ]
M ρ z 0 = 1 .
t ρj = z j R ρj .
SDR = ( σ i ) n × DR .
SDR 1 6 × ( M 1 )

Metrics