Abstract

Efficient wavelength conversion via four-wave-mixing in silicon-on-isolator p-i-n waveguides has been realized. By reverse biasing the p-i-n diode structure formed along the silicon rib waveguide, the nonlinear absorption due to two photon absorption induced free carrier absorption is significantly reduced, and a wavelength conversion efficiency of -8.5 dB has been achieved in an 8 cm long waveguide at a pump intensity of 40 MW/cm2. A high-speed pseudo-random bit sequence data at 10 Gb/s rate is converted to a new wavelength channel in the C-band with clear open eye diagram and no waveform distortion. Conversion efficiency as functions of pump power, wavelength detuning, and bias voltages, have been investigated. For shorter waveguides of 1.6 cm long, a conversion bandwidth of > 30 nm was achieved.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
    [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427 615-618 (2004).
    [CrossRef] [PubMed]
  4. Qianfan Xu, Bradley Schmidt, Sameer Pradhan, and Michal Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  5. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129-3135, (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129</a>
    [CrossRef] [PubMed]
  6. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261-4268 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261</a>
    [CrossRef] [PubMed]
  7. Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437-4442 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437</a>
    [CrossRef] [PubMed]
  8. T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343-3345 (2004).
    [CrossRef]
  9. O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect. Express 1, 429-434 (2004).
    [CrossRef]
  10. Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, Oded Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519-525 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519</a>
    [CrossRef] [PubMed]
  11. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269-5273 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>
    [CrossRef] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  13. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728, (2005).
    [CrossRef] [PubMed]
  14. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34-36 (2004).
    [CrossRef]
  15. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4341</a>
    [CrossRef] [PubMed]
  16. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4629</a>
    [CrossRef] [PubMed]
  17. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), pp. 547-569.
  18. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196-2198 (2004).
    [CrossRef]
  19. T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  20. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>
    [CrossRef] [PubMed]
  21. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  22. Y. L. Lee, C. Jung, Y. Noh, M. Y. Park, C. C. Byeon, D. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655(2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649</a>
    [CrossRef]
  23. Y. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, "All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide," Opt. Express 13, 2988-2993 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988</a>
    [CrossRef] [PubMed]
  24. Details are available at <a href= "http://www.photond.com">http://www.photond.com</a>
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
  26. Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  27. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

IEICE Elect. Express (1)

O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect. Express 1, 429-434 (2004).
[CrossRef]

Nature (3)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427 615-618 (2004).
[CrossRef] [PubMed]

Nature (1)

Qianfan Xu, Bradley Schmidt, Sameer Pradhan, and Michal Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Express (8)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261-4268 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261</a>
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437-4442 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437</a>
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269-5273 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>
[CrossRef] [PubMed]

Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, Oded Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519-525 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519</a>
[CrossRef] [PubMed]

Y. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, "All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide," Opt. Express 13, 2988-2993 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988</a>
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129-3135, (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129</a>
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4341</a>
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Other (5)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), pp. 547-569.

Details are available at <a href= "http://www.photond.com">http://www.photond.com</a>

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).

L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron microscope image of a typical p-i-n waveguide cross-section.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for wavelength conversion experiment

Fig. 3.
Fig. 3.

Spectrum of the output beam from an 8 cm long waveguide. Coupled pump power is 320 mW, and the conversion efficiency is -11.5 dB

Fig. 4.
Fig. 4.

Wavelength conversion efficiency as a function of pump power coupled into the waveguide for an 8 cm long double S-bend waveguide at different bias voltages.

Fig. 5.
Fig. 5.

Wavelength conversion efficiency as a function of signal wavelength detuning from the pump wavelength for a 4.8 cm long S-bend waveguide and a 1.6 cm long straight waveguide. The pump wavelength is 1550 nm and the pump power is 200 mW inside the waveguide.

Fig. 6.
Fig. 6.

Time-domain waveforms of the input (blue) and converted (pink) signals at 10Gb/s

Fig. 7.
Fig. 7.

Eye diagrams of the converted (left) signal with input (right) signal at 10Gb/s

Metrics