Abstract

Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the optical scanning microscope," Opt. Quantum Electron. 10, 435 (1978).
    [CrossRef]
  2. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Optical harmonic generation from animal tissue by the use of picosecond and femtosecond laser pulses," Opt. Lett. 22, 1323 (1997).
    [CrossRef]
  3. P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356 (2003).
    [CrossRef]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
    [CrossRef]
  5. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, "Three-dimensional second-harmonic generation imaging with femtosecond laser pulses," Opt. Lett. 23,1209 (1998).
    [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
    [CrossRef] [PubMed]
  7. D. Bird and M. Gu, "Compact two-photon fluorescence microscope based on a single-mode fiber coupler," Opt. Lett. 27, 1031 (2002).
    [CrossRef]
  8. D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552 (2003).
    [CrossRef] [PubMed]
  9. D. Bird and M. Gu, "Fiber-optic two-photon scanning fluorescence microscopy," J. Micros. 208,35 (2002).
    [CrossRef]
  10. L. Fu, X. Gan, and M. Gu, "Use of single-mode fiber coupler for second-harmonic-generation microscopy," Opt. Lett. 30, 385 (2005).
    [CrossRef] [PubMed]
  11. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Expess 13, 5528 (2005).Q1
    [CrossRef]
  12. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
    [CrossRef]
  13. C. J. R. Sheppard and M. Gu, "The significance of 3D transfer functions in confocal scanning microscopy," J. Micros. 165,377 (1992).
    [CrossRef]
  14. M. Gu and D. Bird, "Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy," J. Opt. Soc. Am. A 20,941 (2003).
    [CrossRef]
  15. M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope" J. Opt. Soc. Am. A 8, 1755 (1991).
    [CrossRef]
  16. S. Kimura and T. Wilson, "Confocal scanning optical microscope using single-mode fiber for signal detection," Appl. Opt. 30, 2143 (1991).
    [CrossRef] [PubMed]
  17. M. Gu, X. Gan, and C. J. R. Sheppard, "Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes," J. Opt. Soc. Am. A 8, 1019 (1991).
    [CrossRef]
  18. S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739 (2004).
    [CrossRef] [PubMed]
  19. M. Gu and C. J. R. Sheppard, "Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy," J. Micros. 177,128 (1995).
    [CrossRef]

2005 (2)

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Expess 13, 5528 (2005).Q1
[CrossRef]

L. Fu, X. Gan, and M. Gu, "Use of single-mode fiber coupler for second-harmonic-generation microscopy," Opt. Lett. 30, 385 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

M. Gu and D. Bird, "Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy," J. Opt. Soc. Am. A 20,941 (2003).
[CrossRef]

D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
[CrossRef]

2002 (2)

D. Bird and M. Gu, "Fiber-optic two-photon scanning fluorescence microscopy," J. Micros. 208,35 (2002).
[CrossRef]

D. Bird and M. Gu, "Compact two-photon fluorescence microscope based on a single-mode fiber coupler," Opt. Lett. 27, 1031 (2002).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

M. Gu and C. J. R. Sheppard, "Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy," J. Micros. 177,128 (1995).
[CrossRef]

1992 (1)

C. J. R. Sheppard and M. Gu, "The significance of 3D transfer functions in confocal scanning microscopy," J. Micros. 165,377 (1992).
[CrossRef]

1991 (3)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
[CrossRef] [PubMed]

1978 (1)

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the optical scanning microscope," Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Alfano, R. R.

Bird, D.

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356 (2003).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
[CrossRef] [PubMed]

Fu, L.

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Expess 13, 5528 (2005).Q1
[CrossRef]

L. Fu, X. Gan, and M. Gu, "Use of single-mode fiber coupler for second-harmonic-generation microscopy," Opt. Lett. 30, 385 (2005).
[CrossRef] [PubMed]

Gan, X.

Gannaway, J. N.

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the optical scanning microscope," Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Gauderon, R.

Gu, M.

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Expess 13, 5528 (2005).Q1
[CrossRef]

L. Fu, X. Gan, and M. Gu, "Use of single-mode fiber coupler for second-harmonic-generation microscopy," Opt. Lett. 30, 385 (2005).
[CrossRef] [PubMed]

M. Gu and D. Bird, "Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy," J. Opt. Soc. Am. A 20,941 (2003).
[CrossRef]

D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552 (2003).
[CrossRef] [PubMed]

D. Bird and M. Gu, "Fiber-optic two-photon scanning fluorescence microscopy," J. Micros. 208,35 (2002).
[CrossRef]

D. Bird and M. Gu, "Compact two-photon fluorescence microscope based on a single-mode fiber coupler," Opt. Lett. 27, 1031 (2002).
[CrossRef]

M. Gu and C. J. R. Sheppard, "Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy," J. Micros. 177,128 (1995).
[CrossRef]

C. J. R. Sheppard and M. Gu, "The significance of 3D transfer functions in confocal scanning microscopy," J. Micros. 165,377 (1992).
[CrossRef]

M. Gu, X. Gan, and C. J. R. Sheppard, "Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes," J. Opt. Soc. Am. A 8, 1019 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope" J. Opt. Soc. Am. A 8, 1755 (1991).
[CrossRef]

Guo, Y.

Harris, D.

Ho, P. P.

Kimura, S.

Laiho, L. H.

Liu, F.

Loew, L. M.

P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356 (2003).
[CrossRef]

Lukins, P. B.

Sacks, P.

Savage, H.

Schantz, S.

Sheppard, C. J. R.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, "Three-dimensional second-harmonic generation imaging with femtosecond laser pulses," Opt. Lett. 23,1209 (1998).
[CrossRef]

M. Gu and C. J. R. Sheppard, "Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy," J. Micros. 177,128 (1995).
[CrossRef]

C. J. R. Sheppard and M. Gu, "The significance of 3D transfer functions in confocal scanning microscopy," J. Micros. 165,377 (1992).
[CrossRef]

M. Gu, X. Gan, and C. J. R. Sheppard, "Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes," J. Opt. Soc. Am. A 8, 1019 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope" J. Opt. Soc. Am. A 8, 1755 (1991).
[CrossRef]

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the optical scanning microscope," Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

So, P. T. C.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
[CrossRef]

Wilson, T.

Yazdanfar, S.

Zhadin, N.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
[CrossRef]

Appl. Opt. (1)

J. Micros. (3)

D. Bird and M. Gu, "Fiber-optic two-photon scanning fluorescence microscopy," J. Micros. 208,35 (2002).
[CrossRef]

C. J. R. Sheppard and M. Gu, "The significance of 3D transfer functions in confocal scanning microscopy," J. Micros. 165,377 (1992).
[CrossRef]

M. Gu and C. J. R. Sheppard, "Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy," J. Micros. 177,128 (1995).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Biotech. (2)

P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369 (2003).
[CrossRef]

Opt. Expess (1)

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Expess 13, 5528 (2005).Q1
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the optical scanning microscope," Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two photon laser scanning fluorescence microscopy," Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber-optical SHG scanning microscope.

Fig. 2.
Fig. 2.

3-D CTF for fiber-optical SHG microscopy. (a) A 1 = 0, A 2=4A 1. (b) A 1 = 1, A 2=4A 1.

Fig. 3.
Fig. 3.

Axial cross section of the 3-D CTF for fiber-optical SHG microscopy using a fiber coupler (A 2=4A 1) for different values of the normalized optical spot size parameter A 1. The dashed curve represents the case for A 1 = 0 and A 2→∞.

Fig. 4.
Fig. 4.

Half width at half maximum of the axial response, Δu1/2, as a function of the normalized fiber spot size parameter when A 2=4A 1 (bottom axis) and when A 1 = 0 (up axis). The squares are experimental results for A 1 =2.0, 4.2, 6.4, 7.3, 8.4, respectively. Inset: Normalized axial response of a perfect SHG reflector in fiber-optical SHG microscopy using a fiber coupler (A 2=4A 1) for different values of the normalized optical spot size parameter A 1. The dashed curve represents the case for A 1 = 0 and A 2→∞.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( r s ) = U 2 * ( x 2 , y 2 ) δ ( z 2 ) [ U 1 ( x 0 , y 0 ) δ ( z 0 ) exp [ ik ( z 0 z 1 ) ] h 1 ( r 0 + M 1 r 1 ) d r 0 ] 2
ε ( r s r 1 ) exp [ ik ( ± z 1 z 2 ) ] h 2 ( r 1 + M 2 r 2 ) d r 2 d r 1 2 ,
I ( r s ) = h eff ( r s ) 3 ε ( r s ) 2 ,
h eff ( r ) = [ U 1 ( M 1 x , M 1 y ) 2 h 1 ( M 1 r ) ] 2 [ U 2 * ( M 1 x , M 1 y ) 2 h 2 ( r ) ] .
c ( m ) = c 1 ( m ) 3 c 2 ( m ) ,
c 1 ( m ) = F 3 { [ U 1 ( M 1 x , M 1 y ) 2 h 1 ( M 1 r ) ] 2 } ,
c 2 ( m ) = F 3 { U 2 * ( M 1 x , M 1 y ) 2 h 2 ( r ) } .
c 1 ( l , s ) = exp ( 2 A 1 s ) { 1 , l 2 2 s 1 2 l ( 1 l ) , ( 2 π ) sin 1 { ( 1 2 s ) [ 2 l ( 2 s l 2 ) 1 2 ] , 1 2 l ( 1 l ) s 1 2 } 0 , otherwise .
c 2 ( l , s ) = exp ( A 2 l 2 2 ) δ ( s l 2 2 ) .
c ( l , s ) = σ exp [ A 2 ( m 2 + n 2 ) 2 ] c 1 ( ( m l ) 2 + n 2 , s m 2 + n 2 2 ) dmdn ,
c ( l , s ) = 0 1 ( l 2 ) 2 [ l 1 n 2 1 n 2 exp [ A 2 ( m 2 + n 2 ) 2 ] c 1 ( ( m l ) 2 + n 2 , s m 2 + n 2 2 ) dm ] dn .
I ( u ) = 0 1 { exp { l 2 [ ( A 1 iu 2 ) + ( A 2 iu ) 2 ] } A 1 iu 2 { 1 exp [ ρ 0 2 ( A 1 iu 2 ) ] } d θ } ldl 2 ,

Metrics